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“There is no real direction here, neither lines of power nor cooperation. Decisions

are never really made – at best they manage to emerge, from a chaos of peeves,

whims, hallucinations and all around a**holery.”

Thomas Pynchon, Gravity’s Rainbow
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SUMMARY

Between the start of my PhD thesis process in January 2023 and its defense, 1420

objects, including rocket bodies, payloads, and tracked space debris, have re-entered

Earth’s atmosphere [1]. Over the next decade, as the commercial space industry

continues to grow and mega-constellations fully deploy, this rate of reentry is likely

to increase tremendously. Launch costs are low and getting lower, contributing to

the popularity of proliferated constellations of cheap, short-lived satellites in Low

Earth Orbit (LEO). These constellations provide invaluable services, such as Earth

imagery for climate science and internet for under-served regions of the globe. How-

ever, growing orbital traffic, particularly in LEO, contributes to greater collision risk.

To mitigate orbital congestion, deorbiting LEO satellites is now mandated by FCC

licensure [2].

There’s a good chance that Earth’s built-in garbage disposal system isn’t free,

and in several years, we could be paying the environmental cost. While scientists

recognize that re-entering space debris could damage the ozone and impact climate

change, the extent of which is unknown. It’s wise for mega-constellation operators to

be mindful of the environmental uncertainty since future policies or social pressure

could influence their operations.

Transitioning from a linear economy of single-use satellites to a circular economy

of re-use could mitigate this source of uncertainty, as well as improve profits for

spacecraft operators in the long run. A critical enabler for circular space economies

is On-Orbit Servicing (OOS), a concept that is far more popular for Geosynchronous

orbit (GEO) than it is for LEO. OOS in LEO is less appealing due to decreasing

launch and satellite cost and inefficient out-of-plane maneuvering. There have been

some concept proposals to improve OOS for LEO, such as proliferated servicing pods

[3], cooperative maneuvering [4], and focusing on scheduled service instead of on-
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demand. However, other interventions and strategies will be necessary to sufficiently

motivate the private sector to invest in OOS for LEO.

Policy and regulations could incentive OOS in LEO by either penalizing or re-

warding spacecraft operators for their disposal and servicing choices. Market-based

policies internalize the cost of environmental damage, influencing private companies

to opt for environmentally-conscious decisions [5]. While there are currently no pol-

icy proposals to encourage LEO-based OOS, there are market-based policy proposals

regarding orbital congestion. Given the close relationship between orbital debris mit-

igation/remediation and On-Orbit servicing, these orbital congestion policies could

simultaneously drive demand for OOS with little to no adjustment.

On-orbit servicing is capital-intensive, operates over a long timeline, and is fraught

with various sources of uncertainty; qualities that many infrastructure projects share.

Flexibility frameworks have successfully identified value in previous infrastructure ef-

forts, such as nuclear power plants, offshore oil rigs, waste-to-energy facilities, water

reservoirs, and many others. The study of flexibility is interested in improving en-

gineering system value via novel, flexible design methods and procedures, referred

to as enablers and strategies, allowing decision-makers to improve economic value,

sustainability, and resilience amidst an uncertain landscape [6]. In their publications

and theses, Saleh, Lamassoure, and Hastings [7] [8] [9] [10] provide insight on the

flexibility value of On-Orbit Servicing. On-orbit servicing provides more than the

possibility for cost savings, it provides a source of flexibility for spacecraft operators

[9]. Their framework focuses on the customer point of view, which is valuable for

understanding the demand for On-Orbit Servicing. Their framework contains a num-

ber of assumptions and simplifications. They include uncertain customer revenue,

but they do not include uncertainty for future launch costs or account for technology

obsolescence. Established in the early 2000s, the framework does not include novel

CONOPs for LEO-based OOS, such as temporary abandonment/orbital storage, pro-
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liferated services, or combined OOS/orbital spare strategies. Additionally, they do

not consider the combinatorial effect of flexible options.

Flexibility could benefit the OOS infrastructure as well as the satellite constel-

lations it serves, since demand is highly sensitive to uncertain parameters such as

launch and spacecraft costs. As de Weck et al. demonstrate in their flexibility frame-

work of the 2000s Iridium constellation, incremental deployment that responds to the

present state of demand could have reduced Iridium’s losses by 30% [11]. Therefore,

flexibility not only drives customer demand for OOS, it could improve the decision-

making and design of the OOS infrastructure itself. It is therefore critical to consider

both advantages to properly assess the value of flexible options and strategies.

No existing flexibility framework for LEO-based OOS includes multi-domain un-

certainty, incremental decision making, and the combinatorial effects of classic OOS

options as well as novel options, such as temporary abandonment, that would al-

low the user to screen for economically and environmentally feasible strategies and

policies. However, frameworks for other infrastructures do address these needs and

could be adapted. A close analog is a framework for offshore oil rigs that features

a screening methodology that uses a mid-fidelity simulation, Monte Carlo scenarios,

and decision rules to compare the value of offshore oil infrastructure options [12].

This thesis makes two primary contributions to advance sustainable space op-

erations in Low Earth Orbit. First, it introduces Collection-as-a-Service (CAAS), a

novel operational concept that transforms traditional multi-echelon sparing strategies

into flexible collection hubs capable of satellite refurbishment, active debris removal

deployment, and incremental capability upgrades. CAAS addresses the fundamental

economic barriers to LEO-based on-orbit servicing by building upon proposed sparing

strategies that aim to appeal to constellation operators, creating immediate opera-

tional value while preserving pathways for future technology adoption. Second, the

thesis develops a comprehensive flexibility framework that integrates a discrete event
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simulation with parametric policy modeling and adaptive decision rules to system-

atically evaluate technical configurations, flexible deployment strategies, and policy

interventions across deeply uncertain futures. This framework represents a method-

ological advancement beyond previous OOS analyses by capturing multi-perspective

decision-making, multi-domain uncertainty evolution, and the combinatorial effects

of flexible options, which are essential capabilities for realistic infrastructure invest-

ment analysis but absent from existing frameworks. The analytical framework it-

self constitutes a standalone contribution applicable beyond the specific CAAS con-

cept and use case used within this thesis. Structured around discrete event simula-

tion with object-oriented architecture, the framework implements three concurrent

decision-making scales: satellite-level decisions (repair, refuel, deorbit choices), fleet-

level decisions (constellation-wide capability upgrades), and infrastructure-level deci-

sions (warehouse additions and capability enhancements). Through systematic Monte

Carlo experimentation across 80 uncertainty scenarios spanning technology costs, fail-

ure rates, policy environments, and market conditions, the framework employs Value

at Risk/Gain (VARG) analysis combined with ranking convergence assessment and

statistical significance testing to distinguish between genuine performance differences

and statistical noise.

To demonstrate the framework’s capability, this thesis applies it to a OneWeb-

inspired mega-constellation case study in LEO. The case study examines an 18-

plane, 648-satellite constellation at 1200 km altitude with 86.4-degree inclination,

evaluating 29-43 unique configurations (depending on the experiment) across varying

warehouse counts, satellite upgrade pathways (refuelability, repairability, RPO capa-

bility), infrastructure flexibility mechanisms, and eight distinct policy schemes over

30-year operational timelines. While this case study provides concrete validation of

the framework’s analytical capabilities and yields specific insights for OneWeb-class

constellations, the framework itself is designed for broader applicability. Future ap-
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plications could examine alternative constellation architectures (different altitudes,

inclinations, or satellite counts), explore technology-specific servicing concepts (such

as in-space manufacturing or modular satellite designs), or evaluate entirely different

policy environments. The OneWeb case study serves to establish proof-of-concept

for the integrated methodology while demonstrating how the framework illuminates

the multi-dimensional trade-space where technical, operational, and policy decisions

interact to shape outcomes for circular space economy development.

The experimental methodology progresses through three hypothesis-driven phases

that systematically build understanding of CAAS performance. Experiment 1 estab-

lishes the baseline value proposition by comparing CAAS configurations against tradi-

tional overpopulation and multi-echelon sparing strategies, isolating the contribution

of join active collection capability, ADR deployment, and Earth-return refurbishment.

Results demonstrate that single-depot CAAS with RPO-capable satellites achieves -

6.48% emissions reduction (p < 0.001) while maintaining cost parity with baseline

(+0.76%, p = 0.74 not significant), validating that sustainability improvements are

achievable without economic penalties. Experiment 2 introduces flexible deployment

mechanisms such as adaptive satellite upgrade timing, conditional warehouse ex-

pansion, and incremental capability additions, to determine which flexible strategies

improve performance under uncertainty. Ranking convergence analysis identifies flex-

ible satellite serviceability upgrades (Rf=1) paired with pre-initialized satellite RPO

capability as the consistently superior configuration, though absolute cost differences

remain too small for statistical significance with 80 scenarios. Sensitivity testing

confirms configuration robustness across operational cost perturbations and uncer-

tain variable ranges, with satellite failure rates emerging as the critical determinant

of CAAS competitiveness. Experiment 3 evaluates eight parametric policy schemes,

from cost-neutral orbital use fees with collection rebates to growth-oriented subsidy

mechanisms, identifying scenario-dependent optimal interventions. Cost-neutral Pol-
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icy 1 ($75k OUF with refund) achieves 29.47% refurbishment throughput increase

(p = 0.038) without measurable cost impact, while Policy 1 applied to 4-depot in-

frastructure ($50k OUF) delivers -9.94% emissions reduction at $350M cost increase,

quantifying the approximate business case gap that government subsidy or dual-use

revenue must close to enable ambitious sustainability outcomes.

The integrated experimental findings validate that Collection as a Service repre-

sents a viable pathway toward circular space economies in LEO, though with impor-

tant context dependencies and trade-offs. Single-depot configurations with flexible

satellite upgrades and pre-initialized RPO capability emerge as the recommended

architecture for cost-conscious stakeholders, achieving sustainability improvements

through partial constellation servicing. Earth-based refurbishment consistently out-

performs space-based servicing across both economic and environmental metrics,

redirecting technology development priorities from complex on-orbit servicing to-

ward reusable launch vehicle architectures and warehouse-based collection operations.

Cost-neutral policy mechanisms demonstrate that sustainable infrastructure develop-

ment need not impose permanent fiscal burdens, while sustainability-oriented policies

reveal the $350M investment threshold necessary for more ambitious 4-depot config-

urations that deliver -9.94% emissions reductions. Critically, the framework reveals

that no single element independently guarantees success across all metrics; rather,

its value lies in illuminating the multi-dimensional trade-space where technical con-

figurations, flexible deployment strategies, and policy interventions interact to shape

outcomes. These findings provide policymakers and industry stakeholders with quan-

titative evidence for context-dependent pathways toward circular space economies,

demonstrating that economically viable sustainability improvements in LEO opera-

tions are achievable through strategic combinations of technical innovation, adaptive

deployment, and targeted policy intervention, which ultimately advances the the-

sis objective of incentivizing private sector investment in space infrastructure that
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balances economic viability, environmental responsibility, and operational resilience.
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CHAPTER 1

INTRODUCTION

After decades of scientific and engineering breakthroughs, we’ve learned a great deal

about our place in space. We’ve gazed into the universe, discovered new planets,

built better communications, developed GPS, connected the world with internet,

and gained better understanding of Earth’s climate. We’ve also landed ourselves

a new environmental hazard. Earth’s orbits have become a tragedy of commons;

providing benefit to many who bear no incentive to play caretaker. As the number of

collisions in space has increased, the conversation about space stewardship has gained

prominence. Despite the international conversation, however, there is little consensus

on responsibility or the best path forward. To date, the international community

hasn’t agreed on a definition for space debris.

The current best practice is to deorbit satellites in Low Earth Orbit and push

Geosynchronous satellites into a graveyard orbit. In recent years, the FCC has made

moves to establish these best practices into their licensure requirements, imposing

fines for those who do not comply with contractual end-of-life agreements [13]. A new

issue arises from this solution, however. As mega-constellations come to term and

operators begin deorbiting thousands of satellites on a continual basis, the population

of pollutants in Earth’s atmosphere will continue to grow. Single-use, short-lived

satellites provide a flexible and cost-effective option for operators, but they contribute

to a potential environmental issue. Like any conversation about sustainability, the

true solution is to transition the linear economy of single use into a circular system

that retrieves the full value of resources. A circular economy in space requires on-orbit

servicing (OOS) capability. While OOS has had numerous successful demonstrations

over the past decades, most private OOS ventures focus their attention on satellites in
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geosynchronous orbit, which provides a more immediate business case than servicing

mega-constellation satellites in LEO. There have been developments in OOS CONOPs

for LEO, but these innovations struggle to compete with on-orbit sparing strategies

that mitigate lost coverage due to satellite failures in a timely and inexpensive manner.

When it comes to building a business case for a circular system, there are nu-

merous sources of uncertainty to consider. While uncertainty creates a challenge for

architecture design, it also presents opportunity. Originally developed for quanti-

tative finance, real options allow the decision-maker to take advantage of upswings

and mitigate the effect of downswings by providing the right, but not the obligation,

to exercise a particular option. Real options have since spread to engineering sys-

tems and evolved into frameworks that help engineers leverage flexible strategies and

mechanisms to improve project outcomes. By anticipating future policy, future de-

mand, and future impact to the upper atmosphere environment, satellite constellation

operators may come to find that circular systems are better in the long run.

This thesis considers the role of flexibility and policy in OOS for LEO-based

satellite constellations and the ADR vehicles that collect their failed satellites. Not

only does flexibility improve the case for OOS because it provides value to customers,

it could improve the manner in which OOS infrastructures are designed and deployed,

taking advantage of opportunities and mitigating downsides as the future unfolds.

1.1 Thesis Objective & Contributions

The thesis objective is to identify opportunities that sufficiently incentivize the private

sector to improve sustainability (via circularity) in LEO and reduce atmospheric

emissions associated with single-use satellites. The three major contributions are a

flexibility framework for LEO-based OOS options, novel OOS elements and CONOPs,

and a methodology to assess policy impact on the OOS business case.

The flexibility framework to screen flexible options for LEO OOS infrastructure

2



leverages a discrete event simulation with object-oriented programming to manage

the logistics, events, and interactions of the OOS infrastructure over each decision

period. The simulation approach provides the necessary degree of fidelity while al-

lowing the user to adequately compare the value of flexibility for various options.

The framework includes multiple sources of uncertainty (launch cost, constellation

growth, customer revenue, technology obsolescence, and random failures) and mod-

els demand as a function of uncertain variables and customer willingness to pay for

servicing, which will be governed by customer decision making. The system of de-

cision rules, embedded within the Discrete Even Simulation, allows for incremental

changes in the infrastructure that respond to the present state of uncertainty and

available capabilities in both satellites and OOS infrastructure. Monte Carlo scenar-

ios, sampled from the multiple sources of uncertainty, will allow the user to conduct

statistical analysis and compare the effectiveness of different options and strategies to

identify which flexible options and strategies provide consistent benefit in managing

total costs while providing environmental benefits like reducing total emissions, in-

creasing servicing throughput, or reducing the number of satellites that deorbit after

a single lifecycle.

The novel LEO-based OOS design element, collection hubs, allows for temporary

abandonment in LEO, which is currently possible in GEO due to graveyard orbits but

not feasible in LEO due to congestion and short orbital lifetimes. By collecting several

old satellites in one location, the servicer may have the economies of scale necessary

to justify servicing them. In the event that refueling and repairing these satellites

is not cost effective, they can be safely deorbited. These collection hubs borrow and

modify concepts from the Jakob et. al. multi-echelon sparing strategy, which contains

a parking orbit for a spare warehouse and places orbital spares in each plane that

are ready to respond quickly to random failures [14]. Multi-echelon sparing strategies

leverage the timeliness of orbital spares while leveraging J2 effects to resupply these
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orbital planes as the warehouse drifts across orbital plans. If active debris removal

(ADR) vehicles collect old satellites and place them in the empty slots left in the spare

warehouse as spares are deployed, these warehouses could refurbish old satellites and

re-deploy them instead of launching batches of entirely new satellites. While a few

researchers have speculated on the usefulness of junk collection in orbit [15] [16], none

have fully investigated its feasibility or usefulness for creating an OOS business case.

Additionally, the framework also provides an opportunity to evaluate the effect

of policy on demand for on-orbit servicing, so policy-minded users can understand

how their policies might promote circular economies. Policy is an additional source

of uncertainty for constellation operators, so including policy will allow the business-

minded user to determine which infrastructure elements or strategies perform best

under different policy types. While not enough is known about the environmental im-

pact of atmospheric emissions, existing policy proposals for orbital congestion could

simultaneously encourage the market for on-orbit servicing with little to no modifi-

cation. This thesis will provide a parametric testbed for how different policies and

policy parameters will improve the case for OOS in LEO. So far, research for this

thesis has led to two related publications that were presented at Scitech 2025 [17] and

Ascend 2025 [18]. The Scitech conference paper presented the novel CAAS CONOPs

and preliminary flexibility framework while the Ascend conference paper leveraged

the framework to conduct policy analysis. These conference papers are slated to

become journal papers in 2026, following the completion of this dissertation.

1.2 Thesis Organization

Chapter 2 provides the motivation for this thesis as well as a literature review of rele-

vant studies. It identifies the literature gaps, characterizes the problem, and presents

the research questions along with the logic supporting the hypotheses. The logic

flow is illustrated in Figure 1.3. Chapter 3 contains the methodology formulation,
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depicted in Figure 1.3, necessary to address these hypotheses. Chapter 4 utilizes

the methodology to address the research questions presented in Chapter 2, providing

the experimentation results and analysis. Lastly, Chapter 5 summarizes the results,

provides insights from the findings, reflects on lessons learned, and makes suggestions

for future work within its concluding remarks.

Figure 1.1: Space Junk Allocation & Waste Abatement (JAWA)
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CHAPTER 2

BACKGROUND AND MOTIVATION

2.1 Growth of the Commercial Space Industry

Mega-constellations in LEO provide valuable services, such as Earth imaging for cli-

mate science and providing internet for under-served regions of the globe. Euroconsult

forecasts that within the next decade, operators will launch 2,500 satellites per year,

adding up to 24,500 satellites with a total market of $400 billion [19]. A decade at this

predicted growth means increasing the number of satellites by 4.5 times, increasing

total mass in orbit by 3 times, and increasing the market value by 1.5 times. While

constellation satellites make up 83% of the demand per satellite and will account for

greater than 50% of additional satellites in the next decade, they only account for

30% of the market value.

Mega-constellations of small, inexpensive satellites in LEO are increasingly pop-

ular due, in large part, to decreasing launch and spacecraft costs. Proliferated con-

stellations benefit from operational flexibility because they are able to reconfigure to

mitigate the effect of uncertain demand and random failures. Including manufactur-

ing and launch, GEO satellites cost between $150 million and $500 million and have

an average lifespan of 15 to 20 years [20]. Meanwhile, the LEO heavy launch cost

per kilogram has fallen more than 95% in recent years, from $65,000 per kilogram to

$1,500 per kilogram—more than a 95 percent decrease [21]. Due to the growing trend

in rocket reusability and heavy lift vehicles, Euroconsult reports that by 2031, they

anticipate launch cost per satellite to be 33% of what it is today. LEO satellite cost

and lifespan vary widely. The Starlink satellites, for instance, cost about $500,000

and have a lifespan of 5 years. At full scale (12,000 satellites), Starlink would have a
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reoccuring annual cost of approximately $8.2 billion per year [22].

Observation 1: LEO Mega Constellation Growth
Low launch costs, the need for operational flexibility, and increased demand for

space-based services are driving the number and size of LEO mega constella-

tions.

The six major comsat mega-constellation companies, including Starlink, OneWeb,

and GuoWang, contribute about 2/3 of the projected satellite total. Euroconsult also

projects that the top six space-faring governments will still be the driving force in the

satellite industry, accounting for 72% of the market value. A major risk facing the

growing satellite industry is manufacturing overcapacity, since the combined capacity

of the mega-satellite factories is approximately 10 times greater than Euroconsult’s

forecasted demand. Table 2.1 displays a summary of constellations projected for the

next decade.

Table 2.1: Highlighted Constellation Projections

Constellation Owner Number of Satellites Altitude
Amazon 3,236 590-630km
Boeing 147 1056-44221 km
China SatNet 12,992 500-1145km
OneWeb 6,372 1200km
SpaceX 29,988 550km
Telesat 198 1000km

2.2 Orbital Congestion & Space Debris

Within the next few decades, at the current pace of space debris propagation, portions

of space may be unusable. The US currently tracks 36,500 pieces of debris greater

than 10cm. There are a predicted 500,000 pieces below 1cm. According to the ESA,

the total mass of space objects in orbit weigh about 9,600 tonnes. The Starlink pro-

gram alone will add 3,000 tonnes to LEO, which is greater than the current total
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number of spacecraft in LEO. Starlink satellites have a 5-6 year life cycle and take 6

months to deorbit, which means that at any given time, 10% of the mega-constellation

will occupy the same congested piece of space [23]. As more collisions occur, more

collisions are likely to occur, leading to the phenomenon known as the Kessler Syn-

drome. A visualization of the crowded LEO regime is presented in Figure 2.2, where

the blue dots represent active satellites, the red dots represent large pieces of debris,

and gray dots represent small pieces of debris [24]. While mega-constellations did not

create the entire space debris issue, they do contribute a considerable amount of mass

to Low Earth Orbit and increase the risk of collision events.

Figure 2.1: Cumulative Objects in Space [23]

Observation 2: Orbital Congestion Challenge
LEO is a densely populated regime; mega constellations further exacerbate

orbital congestion and collision risk.

2.3 Global Response to the Space Debris Problem

While many international leaders recognize the urgent need to rectify space debris

and space congestion, there is little agreement over the proper course of corrective

action. The space debris issue is in its adolescence, entering the mainstream conversa-
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Figure 2.2: Visualization of Tracked Objects in LEO. Active satellites are blue, large
debris is red, small debris is gray [24]

tions only 15 years ago. Addressing the space debris issue requires a reconfiguration

of a deeply uncertain, international, and intricate socio-technical regime that has

operated under the flag of exemptionism since its inception [25]. Space debris and

space sustainability are often part of the same conversation, largely because sustain-

able practices could both mitigate and remediate space debris. Bringing sustainable

practices to space requires a large inertial change, but industries and governments

could apply lessons learned from other environmental efforts and energy transitions.

True space sustainability will require international cooperation, new technologies, new

business concepts, and new policies.

In the 15 years of international space debris conversation, values and perspectives

have grown from mitigation (preventing more debris), to remediation (cleaning up

current debris), and finally adaptation (finding uses for the debris) [26]. Yap et al.

used socio-technical configuration analysis (STCA), a form of discourse networking,

to track these trends. By categorizing discourse into state, market, global gover-
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nance, global community, and sustainability values, Yap et al. tracked congruence

between both concepts and actors. Starting in 2007 with the Chinese ASAT test,

immediate attention was focused on the potential of space weaponization, shown in

phase 1 of Figure 2.3. In 2008, a collision occurred when a defunct Russian satellite

struck an Iridium satellite. In the following years, the conversation focused on the

responsibilities of the state, disarmament, and methods to prevent further debris cre-

ation. The question of “who pays” gained central attention as spacecraft operators

and governments considered the business case for debris removal. Consideration for

space sustainability was not yet a central focus. During phase two, between 2012 and

2015, national interests took central focus as global community logic weakened, as

shown in phase 2 of Figure 2.3. As governments and companies started to recognize

the potential for space economies, they recognized that debris must be remediated

instead of just mitigated. By 2016, more entities started discussing the need for sus-

tainability both for and in space. This is clear in phase 3 of Figure 2.3, where we see

sustainability logic take a central role in the conversation.

Over the last few years, a number of international organizations, such as the

Inter-Agency Space Debris Coordination Committee (IADC), the United Nations

(UN), and the International Organization for Standardization (ISO) have established

guidelines for space debris mitigation. In 2022, the White House released its own

Orbital Debris Implementation Plan, which describes specific actions in three cate-

gories: debris mitigation, tracking and characterization of debris, and remediation of

debris [27]. Aligned with the findings of Yap’s STCA, the report notes its priority to

improve safety and sustainability in the space environment. The inter-agency plan

also includes intentions for research programs and development of debris recycling

and re-purposing.

In 2023, the Space Safety Coalition released the Best Practices for the Sustainabil-

ity of Space Operations report, which provides recommendations for best practices to
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Phase 1 Phase 2

Phase 3

Figure 2.3: 3 Phases of the Yap et al. Socio-Technical Configuration Analysis show
Sustainability Logic (purple) shift to a central focus by 2016 (Phase 3) [26]

address the growing needs of both space safety and space sustainability [28]. Proper

end-of-life disposal is critical for debris mitigation; for LEO, this means deorbiting

satellites within 5 years and for GEO, it means placing the satellite into a graveyard

orbit.

Major US spacecraft operators have displayed commitment to adhering to the

best practices. Although SpaceX hasn’t signed the Space Safety Coalitions’s report,
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they have made efforts to properly deorbit their Starlink satellites, include collision

avoidance systems, and reduce reflectivity of their satellites. Both government and

industry are hopeful that “recommendations” and best practices are sufficient to

properly mitigate space debris, but international adherence proves to be a struggle.

In 2022, the FCC turned best practices into rules, requiring all non-GEO space-

craft operators to reenter within 5 years of the mission period, a change from the

historic practice of deorbiting within 25 years [2]. Additionally, the FCC requires

spacecraft operators to keep impact energy below 15J and keep casualty risk less

than 1 in 10,000 [29]. Practices to improve satellite demiseability decrease strike

risks, but they introduce particles into the atmosphere [30].

The FCC has since demonstrated their commitment to these end-of-life disposal

requirements. On October 2nd, 2023, the Federal Communications Commission fined

Dish $150,000 for failing to properly dispose of their EchoStar-7 [13]. Dish only made

it to 122 kilometers above its geostationary orbit before running out of propellant, just

halfway to their designated graveyard orbit. In 2012, Dish agreed to move its satellite

300km above geostationary orbit. In May 2022, they began to reposition EchoStar-7,

not realizing that the spacecraft had less reserved propellant than expected. Although

$150,000 is relatively little, it marks the first time that the FCC has imposed a

fine for failing to meet contractual end-of-life conditions. In addition to paying the

fine, Dish must develop and install new orbital debris mitigation measures, such as

better methods of monitoring propellant supply, more transparency about its disposal

logistics, and better training for its employees. Loyaan Egal, the FCC Enforcement

Bureau Chief, claimed that this penalty demonstrates how “the FCC has strong

enforcement authority and capability to enforce its vitally important space debris

rules” [13].

In a recent NASA analysis of space debris remediation strategies, key methods

include ground-based and space-based lasers, as well as sweepers for small debris [31].
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For trackable debris, options include controlled/uncontrolled reentry, rocket/laser

just-in-time collision avoidance, and recycling debris for propellant. Major findings

indicate lasers and just-in-time collision avoidance are cost-effective for small and

large debris, respectively. Their study found that reusable remediation services for

reentry show promise, while recycling debris into propellant for deorbiting operations

lacks clear risk advantage. Notably, all methods rely on deorbiting for disposal.

Observation 3: Current Disposal Practice
Deorbiting is the only universally-accepted best practice to dispose of satellites

in LEO.

2.4 Environmental Impact

Since space debris is a highly complex and interdisciplinary issue, John Pelton argues

that a complete solution requires improvements in the following categories: tech-

nology, strategic management and planning, risk minimization, finance and capital

planning, international policy and relations, and environmental assessment [32]. En-

vironmental assessments for satellite constellations are usually focused on the space

environment, but few consider the impact that these constellations of single-use satel-

lites have on the atmospheric environment.

When it comes to space debris mitigation in LEO, the best practices are to em-

ploy collision avoidance systems on active satellites and deorbit end-of-life satellites.

However, as mega-constellations grow, deorbiting satellites on the order of thousands

could lead to several issues, such as increased strike risk, degradation to Earth’s atmo-

sphere, wasted terrestrial resources, and congested deorbit space. The NASA Space

Debris Remediation Cost and Benefits study suggests that reentering space debris

can release harmful materials and can catalyze harmful chemical reactions as the at-

mosphere gets hotter [31]. Although sustainable practices fell outside of the NASA

report’s scope, the authors did speculate that practices such as recycling debris could
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offer environmental benefits, if not financial ones.

The Aerospace Corporation recently published about life cycle assessments of the

space economy [25]. Jones and Jain suggest that, as the number of reentering satellites

increase, particulates deposited upon reentry could change atmospheric behavior. As

these particulates travel to lower altitudes, particularly alumina, they could “interact

with ozone depleting chemistry” and contribute to changes in global temperatures

[25].

Much like how the “Big Sky” theory was used to diminish concerns about crowding

in space, the meteoroid theory addresses concerns about alumina particulates in the

upper atmosphere. Given that alumina from meteoroids have had no measurable

impact on Earth’s atmosphere, spacecraft operators and policymakers determined

that deposited material from deorbiting spacecraft would be negligible. Boley and

Byers challenge this existing environmental assessment and finds that alone, Starlink

satellites will deposit more aluminum into Earth’s upper atmosphere than meteoroids

[23]. On a daily basis, 52 tonnes of meteoroids enter the atmosphere, less than

1% of which is aluminum by mass. A 5-year cycle of a 12,000 satellite Starlink

constellation would deposit 2 tonnes of aluminum per day [23], which would be roughly

4x the amount of daily meteoroid aluminum. In the past, scientists have suggested

using aluminum at high altitudes in a controlled geo-engineering experiment to adjust

the Earth’s albedo and counteract global warming [33], however, these suggestions

were met with significant controversy [34]. Large-scale spacecraft deorbiting would

effectively become an uncontrolled form of this controversial experiment [23].

Jain and Hastings consider a theoretical scenario of satellite reentry over the South

Pacific and employ the Whole Atmosphere Community Climate Model (WACCM) to

estimate the direct radiative forcing of the deorbiting alumina particles [30]. They

assume that 1.33 Tg of alumina reenters the atmosphere on a yearly basis, matching

the expectations for deorbiting mega-constellations. They represent alumina particles
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as terrestrial dust in WACCM, since the software doesn’t include alumina materials.

They note that the current alumina flux levels are 150 Mg/year, which comes from as-

sumptions about aluminum composition in satellites and rockets and how much mass

ablates upon reentry. They also assume that all aluminum particles oxidize to form

alumina, which is likely an overestimation. Another conservative assumption is that

alumina particles form between 0.01 an 0.1 microns; conservative because large par-

ticles take the longest to descend. They repeat the aluminum flux over several years

to resemble repetitive nature of reentering mega-constellations. Considering radia-

tive forcing of alumina particles only, their findings suggests that there is no need to

drastically alter best practices for satellite decommissioning because they find no long

term issues related to reentering alumina’s directive radiative cooling. However, they

note the possibility for secondary consequences like the impact of asymmetrical radia-

tive forcing on climate. They also note that there could be unintended consequences

related to stratospheric ozone depletion. They don’t consider other forms of atmo-

spheric emissions related to deorbiting satellites and rocket launches, such as NOx,

black soot, hydrochlorocarbons, etc. They don’t consider the emissions related to the

rocket launches necessary to deliver each iteration of single use satellites. Therefore,

due to its limited scope, this study does not serve as comprehensive evidence that

deorbiting single-use satellites is acceptable in the long term and at scale.

Another study, entitled “Future Decreases in Thermospheric Neutral Density in

Low Earth Orbit due to Carbon Dioxide Emissions”, studies the impact that increased

CO2 concentrations have on neutral thermospheric density, which in turn would in-

crease the amount of time needed to deorbit spacecraft thanks to less atmospheric

drag [35]. The study employed a simulation of Earth’s atmosphere and found that

there’s already been a 17% reduction in Earth’s atmospheric density at 400km. At

their 50:50 probability threshold, this number could reach 30% reduction if global

warming stays within the bounds of the Paris Agreement (1.5 Celsius increase). This

17



corresponds to LEO orbital lifetimes that are 30% longer than they would have been

in 2000, which increases the probability of collision and exponential debris growth.

To meet the deorbit guidelines, spacecraft operators who rely on atmospheric drag

will have to lower their final orbit perigee or implement new technology to increase

drag, such as drag sails. Both of these options require more spacecraft mass to be

dedicated to deorbiting operations.

Observation 4: Environmental Impact
Launches and deorbiting contribute to atmospheric emissions and environmen-

tal degradation; the extent of which is not entirely understood and largely

unregulated.

Both rocket launches and reentering spacecraft create emissions that are harmful

to the ozone and cause radiative forcing [36]. All combustion systems emit H2O and

NOx while some also emit black carbon, alumina particles (Al2O3), and chlorine gas.

Reentering spacecraft and debris also released thermal NOx into the mesosphere.

These emissions are detrimental to the ozone, as Ryan et. al explain in their journal

paper [36]. The increased activity in the space sector has lead to notable changes in

the stratospheric ozone layer. The black carbon (BC) released during rocket launches

poses a greater threat to global warming than other forms of soot. As the space

industry grows, it could undermine all the progress made by the Montreal Protocol

[36].

In order to calculate pollutant emissions, Ryan et. al use activity factors and re-

port emission pollutant factor by fuel type, assuming that all fuel is used at each stage.

For reentering reusable vehicles, they estimated that NOx emissions are roughly 17.5%

of its mass, which is consistent with Larson et. al [37]) and studies on Space Shut-

tle reentries [38]. For both controlled and unplanned payload/debris reentries, they

estimate that NOx emissions are equivalent to 100% of its mass. Their model found
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that ozone in the upper stratosphere, at northern altitude, was the most susceptible

to launch and reentry emissions. In the last decade, the biggest contributors to this

depletion is 51% due to NOx (reentry heating), and 49% due to chlorine from solid

fuel rocket. Regarding reentering spacecraft, their biggest sources of uncertainty were

location and mass of reentering objects as well as proper parameterization of NOx

emissions from reusable rocket stages [36]. This thesis develops an emissions model

of NOx based on mass reentering the atmosphere.

Observation 5: NOx Emissions
While there are a number of different emissions related to rocket launch and

atmospheric reentry, NOx is a strong proxy for this thesis because its formation

and impact on the ozone are relatively well understood. The production of

NOx emissions is related to mass reentering the upper atmosphere and vehicle

demisability.

In short: deorbiting satellites have an effect on the environment, and changes in

the environment have an effect on deorbiting satellites. While the impact of reentering

satellites on the upper atmosphere is not yet entirely understood, it is evident that

environmental considerations are worthy of consideration for future-minded space-

craft operators. The National Environmental Policy Act (NEPA) applies to rocket

launches, reentry, and recovery [39]. While regulations for environmental assessments

of rocket launches are well established, there is less precedent for satellites in the space

environment. To date, Earth’s orbits are not yet considered a “human environment”.

The deorbiting strategy is sensitive to environmental and political changes, so it is

valuable for constellation operators to consider system flexibility to account for the

uncertainty.

One option to mitigate the environmental cost of LEO mega constellations without

harming the growth of the space industry is to reduce reliance on single-use satellites
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and extend satellite lifetimes, fostering a circular economy in space that makes use

of the resources already in orbit and limits the need for deorbiting and launching

new satellites. Not only could circular economies reduce the mass flux through the

atmosphere, it could improve the bottom line for commercial space companies in

the long run. Another option is to impose policies and regulations that specifically

address atmospheric emissions and force private companies to modify their operations

accordingly. The following sections discuss these two options and how they relate to

the issues of orbital congestion and atmospheric emissions.

2.5 Circular Space Economies

Imagine discarding your car after it runs out of gas, or throwing away your laptop

after it runs out of charge. Repeated use of expensive technology is not only cost

effective, it’s an effective use of Earth’s resources. While the linear economy approach

disposes waste after a single use, circular economies find a way to effectively recycle

or reuse waste and get the most value out of resources. As the EPA defines it, “A

circular economy uses a systems-focused approach that is restorative or regenerative

by design to enable resources to maintain their highest value for as long as possible”

[25]. Circular economies can be difficult to implement, but companies like IKEA,

Burger King, and Adidas have made moves to improve the circularity of their supply

chains, placing emphasis on reusing and recycling resources [40]. In some cases,

policies are necessary to encourage private companies to embrace circularity, as we

see with the lithium ion battery industry [41].

Circular systems are especially useful in applications with scarce and finite re-

sources, which is the case for many space missions. For instance, the International

Space Station is able to recover 98% of its water, recycling sweat and urine from the

astronauts [42]. Circular Environmental Control and Life Support Systems (ECLSS)

are of vital importance for extended, manned missions because they reduce the need
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for resupply launches, reducing cost and extending mission timelines.
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Figure 2.4: Elements of a Circular Space Economy

Just as circular economies improve ECLSS, they could both increase value for

spacecraft operators and reduce the amount of mass flux through the atmosphere.

While the exact impact of atmospheric emissions is unknown, reducing mass flux

mitigates the uncertainty of atmospheric emissions. In doing so, the private company

could improve its bottom line over the long run. As more is known about atmospheric

emissions, policies could penalize spacecraft operators that don’t operate sustainably,

so it’s wise for operators to be readily adaptable to sustainable practices. Figure 2.4

illustrates the elements of a circular space economy.

In order to reuse satellites, there must be capability for on-orbit servicing (OOS),

which is a branch of on-orbit servicing and manufacturing (OSAM). As Jones et al.

explain in “The Green Circularity: Life Cycle Assessments in the Space Industry,”
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Figure 2.5: Circular Economies in Space [25]

circular space economies rely on the ability to service and recommission satellites at

the end of their lifetimes [25]. They also highlight the value of reusing and recy-

cling space debris left in graveyard orbits. Figure 2.5 contains their satellite lifecycle

diagram.

Observation 6: Circular Economy Potential
Circular economies make efficient use of resources and reduce environmental

impact, making them a key element for sustainable space industries. OOS is a

critical capability for establishing circular economies in space.

Overall, the United States demonstrates sustained interest in On-Orbit Servicing
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and Manufacturing (OSAM) development for economic, military, and sustainability

purposes [43]. The 2021 Space Priorities Framework document notes that licensing

requirements and operating guidelines would provide clarity and certainty to better

support commercial OSAM [43]. In most policy documents regarding OSAM, how-

ever, US authorities focus on the need for more OSAM research and development to

mitigate uncertainty. The following section reviews the state-of-the-art for OSAM

and On-Orbit Servicing (OOS).

2.6 Current State of OSAM/OOS

The concept of OOS is nearly 20 years old and has been demonstrated in a number

of government and commercial applications. In 2007, DARPA launched the Orbital

Express mission, which successfully demonstrated the feasibility of autonomous oper-

ations to service a satellite [44]. Since the early 2000s, robotic OOS has been capable

of the same repairs that astronauts made to the Hubble telescope [45].

In more recent years, the Space Force recognizes satellite servicing and on-orbit

logistics as a “core capability”, planning to purchase in-space refueling and servicing

as soon as the 2030s [46]. Prioritizing improved maneuverability and flexibility in

the space domain, the Space Force is primarily focused on refueling services, but

has also invested heavily in OSAM as well, expressing interest in propellant recycled

from space debris. In February 2023, the U.S. Space Force awarded 1.7 million to

Cislunar Industries, Astroscale, and Colorado State University for a Phase II Small

Business Innovation Research (SBIR) award [47]. Ron Lopez of Astroscale U.S. said

that the proposed CONOPs would provide a more “sustainable and flexible approach”

compared to the old routine of launching and deorbiting assets.
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Table 2.2: OOS/ADR Companies: Past, Present, and Future Missions with RPOD/RPO Capabilities

Company Past Missions Present/Ongoing Future Missions RPOD/RPO Use
Astroscale
(JP/UK/US)

ELSA-d (2021-2024):
First commercial debris
docking demo, magnetic
capture [48]

ADRAS-J (2024-present): Debris inspection of
H-2A upper stage, achieved 15m approach [49];
ELSA-M: OneWeb satellite removal (2027)
[50]

ADRAS-J2 (2027-2028): First large debris re-
moval using robotic arm [51]; COSMIC (UK,
2025-2026): Remove 2 UK satellites [49]; LEXI
GEO servicer (2025+) [52]

Autonomous RPO, mag-
netic docking, model
matching navigation,
angles-only navigation [53]

ClearSpace
(CH)

None (founded 2018) ClearSpace-1 (in development): Target
changed from VESPA to PROBA-1 [54]

ClearSpace-1 (2026-2029): First ESA ADR
mission, 4-armed capture, €86M [55]; CLEAR
(UK, 2026+): Remove 2 UK satellites [56]; In-
telsat GEO life extension (2026-2028) [57]

Autonomous rendezvous,
robotic arm capture (4
arms), proximity ops [58]

Northrop
Grumman
SpaceLogis-
tics (USA)

MEV-1 (2020): First
commercial GEO dock-
ing with Intelsat 901,
5-yr life extension [59];
MEV-2 (2021): Docked
with Intelsat 10-02 [60]

MEV-1 & MEV-2: Continue providing
station-keeping services in GEO

MRV + 3 MEPs (2026 launch): Robotic ser-
vicing with NRL arms, customers: Intelsat (2),
Optus (1) [61] [62]; DARPA RSGS: Inspection,
repair, relocation [61]

Advanced RPO, au-
tonomous docking, robotic
manipulation, inspection
[63]

Orbit Fab
(USA/UK)

Tenzing (2021): First
commercial fuel depot
test [64]

RAFTI flight qualification (2024): First refuel-
ing port, TRL-8, $30K price [52]; 100+ RAFTI
units sold/in production [65]

Space Force Tetra-5 refueling (2025-2026):
First operational hydrazine delivery in GEO;
DIU RAPIDS fuel depot & shuttle (2025+)
[66]; UKRefuel (2027): LEO refueling with
ClearSpace/Astroscale [67]

GRIP docking mecha-
nism, cooperative RPO
with RAFTI interface,
autonomous approach [68]

D-Orbit
(IT)

Multiple ION orbital
transfer vehicle missions

RISE mission development: ESA’s €119M
GEO servicing mission [69]

RISE (2028+): Commercial GEO satellite
docking, maneuvering, and release for life ex-
tension [69]

Robotic docking systems,
rendezvous in space [69]

Maxar
(USA)

Development work on
satellite servicing tech

NASA OSAM-1 (cancelled 2024): Was devel-
oping robotic refueling for Landsat 7 [70]

Robotic arms for various servicing missions
[71]

Robotic satellite servicing,
autonomous RPO [70]

Airbus (EU) Development of robotic
servicing systems

Partnership with Astroscale UK: 100+ dock-
ing plates ordered (2025) [72]; Developing
modular servicing systems [71]

Robotic maintenance, refueling, life extension
systems [71]

Robotic systems, multiple
docking methods (robotic
& magnetic) [72]

Telespazio/
Thales
(IT/FR)

Extensive ground opera-
tions experience

Italian IOS Demo Mission (PNRR funded):
Ground segment development [73]; Space USB
project: Standardized interfaces [74]

START servicing spacecraft (by 2026): Refu-
eling, component replacement, orbit changes
[75]; EROSS IOD: Robotic orbital support [74]

Robotic docking, ren-
dezvous, standardized
interfaces [74]

Momentus
(USA)

Vigoride orbital transfer
vehicles

Multiple Vigoride missions for last-mile deliv-
ery

In-space transportation and servicing expan-
sion [76]

Proximity operations, or-
bital transfers
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Table 2.2 summarizes past, present, and future OOS/ADR missions across vari-

ous companies and highlights the growing technological maturity within the industry.

Several critical technologies for on-orbit servicing, such as Orbit Fab’s RAFTI with

a TRL of 8, have been successfully demonstrated or have upcoming demonstrations.

SpaceLogistics has successfully demonstrated advanced RPO with autonomous dock-

ing for life extension purposes, while Astroscale has been making strides in RPOD

with non-cooperative targets for ADR purposes.

2.6.1 OOS Business Case

While there are a number of technological, political, and financial challenges facing

orbital congestion and atmospheric emissions, several companies have made big strides

towards fostering the circular space economy by developing active debris removal and

On-Orbit Servicing technology. ADR and OOS have become increasingly inter-related

concepts in recent years, with many OOS and ADR companies either collaborating

with each other or developing both operations in tandem [77].

While the looming question of “who pays” lingers, OOS and ADR companies

largely rely on government investment. There are commercially funded missions, how-

ever, such as the SpaceLogistics MEV program. SpaceLogistics successfully docked

their Mission Extension Vehicle (MEV-1) with Intelsat IS-901 in February 2020, with

Intelsat paying $13 million per year for life extension services [78]. Their MEV-2

followed with another successful docking in April 2021. Building on these successes,

SpaceLogistics is developing the Mission Robotic Vehicle (MRV), slated for 2024,

which will incorporate a 7-DOF robotic arm for inspection, relocation, active debris

removal, and repair capabilities [62].

Astroscale is advancing ADR capabilities through missions like ELSA-d (launched

March 2021), which successfully demonstrated magnetic docking and autonomous

navigation, achieving rendezvous within 160m from 1,700km away despite thruster
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anomalies preventing full mission completion [79]. Their upcoming COSMIC mission

aims to capture two inoperable British satellites by 2026 [80]. Orbit Fab, founded in

2018, is building a propellant supply chain in space, having established the first fuel

depot in 2021. Their engineers claim refueling stations could reduce debris removal

costs by 80% and potentially reduce CO2 emissions by 2.3 Gigatons annually [81]

[82]. Their Podracer mission, planned for 2026, will demonstrate proximity opera-

tions and docking technology using their RAFTI and GRIP interfaces [83]. However,

cost challenges remain significant. MAXAR’s OSAM-1 program was shuttered after

NASA removed funding when costs approached $2 billion, which is nearly triple the

original $626-753 million estimate [84]. A major cost driver was refueling satellites

not designed to be refueled, though standardization of refuel ports across the satellite

industry could improve the business case considerably.

Some researchers suggest that space debris itself contains value and could help

encourage a circular economy in space [85] [86] [87] [88] [89]. Private companies are

actively developing induction foundry technology that would make on-orbit recycling

possible [90]. NASA is also investing in space debris recycling technology, providing

$750,000 to both Cislunar Industries and Yolo Robotics to finance the development of

vacuum-rated electromagnetic induction furnaces that could transform space debris

into useful stock and filaments [90].

Most OOS/OSAM concepts, including those that consider recycling debris, focus

on GEO, since GEO spacecraft are usually more valuable and debris takes longer to

naturally deorbit. Sears and Ho present an integrated model of a GEO On-Orbit

Servicing infrastructure that studies the effectiveness of ISAM (In-Space Additive

Manufacturing) and material recycling [86]. They found that these capabilities im-

prove the infrastructure’s ability to service random failures and significantly improve

required resupply launch mass. Another GEO OOS concept, called Space JANITOR,

presents a multi-stage deployment plan that builds towards a fully-functional space
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debris recycling and re-purposing infrastructure [89]. The Space JANITOR concept

includes orbital cleaning drones (OCD) to bring debris to the modular Recycling Hub

and Base (ReHAB).

In their framework to optimize many-to-many OOS operations in GEO, Sarton du

Jonchay expands upon OOS options by including specific services such as inspection,

refueling, station-keeping, repositioning, repair, and mechanism deployment while

also incorporating the tools necessary to perform these services, such as refueling

apparatuses, observation sensors, dexterous robotic arms, and capture mechanisms

[20]. Sarton du Jonchay notes that service vehicles could include one or many of these

capabilities.

Despite the large population of LEO satellites, issues with orbital congestion, and

growing need to improve space sustainability, there are currently no plans for OOS

in LEO aside from active debris removal and technology demonstrations that are

conducted at lower altitudes to save cost [91]. GEO satellites are attractive for OOS

because they are expensive to launch, have long life-cycles, and have long decay rates.

Additionally, GEO satellites left in graveyard orbits still have the chance at a second

life, effectively providing operators with the option to temporarily abandon assets.

As the collection of valuable satellites in graveyard orbits grows, OOS providers have

greater economies of scale. The business case for private OOS in GEO exists, as

demonstrated by the MEV program. In LEO, however, satellite operators prefer to

deorbit and follow the make-use-dispose cycle. Graveyard orbits and the option for

temporary abandonment is not currently feasible in LEO.

In summary, the growing mega-constellation industry is causing environmental

stressors which could be mitigated with policy and/or establishing circular economies

in LEO. OOS is a critical capability for system circularity, but there is little demand

and no clear business case for OOS in LEO. Understanding the differences between

OOS in LEO and GEO is critical to understanding what measures would incentivize
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OOS in LEO. The first step is to modify OOS infrastructure design to meet the needs

of the LEO regime. It is necessary to ensure that the infrastructure reduces reliance

on deorbiting to the extent that its own emissions contributions are justified. To

improve the case of OOS in LEO, it may be useful to leverage the value of flexibility

and adapt orbital congestion policies to encourage sustainable practices in LEO.

Observation 7: Technology Readiness
Much of the necessary technology for OOS has reached maturity. Currently,

GEO is more attractive for OOS infrastructures than LEO due to the economic

and operational challenges of conducting OOS in LEO. However, OOS in LEO

would address the growing issues of orbital congestion and atmospheric degra-

dation. Furthermore, circular systems in LEO could prove to be more profitable

over the long run.

2.7 Developments in LEO-based OOS

Motivating Question 1
How can we mitigate the environmental cost of LEO mega constellations while

incentivizing economically viable on-orbit servicing infrastructure that supports

the growth of a circular space industry?

2.8 Hypothesis 1: Collection Hubs

2.8.1 LEO-Specific OOS Challenges

LEO is a different environment than GEO, so it only follows that OOS in LEO would

differ from OOS in GEO as well. At low altitudes, J2 nodal precession due to Earth’s

oblateness causes RAAN drift, significantly altering orbital trajectories. Addition-

ally, atmospheric drag has a more pronounced effect. Out-of-plane maneuvers are

inefficient in LEO compared to GEO, which means LEO has a greater use for sched-

28



uled servicing than on-demand scheduling. Some researchers have dismissed OOS in

LEO because maneuver requirements in LEO make multi-plane servicing infeasible

or because LEO satellites have too little value to be worth servicing [92] [93].

Observation 8: LEO OOS Limitations
There are unique challenges for OOS in LEO compared to GEO: RAAN/in-

clination changes are very inefficient, constellations are proliferated, and LEO

satellites are relatively cheap, making them less attractive servicing candidates.

2.8.2 Improving OOS CONOPs for LEO

Motivating Question 2
How to design OOS CONOPs specifically for LEO?

Proliferated Services

Luu et al. assess the value of OOS for mega-constellations in LEO by modeling sev-

eral scenarios within a utility tradespace [3]. They find that in some cases, OOS

compares favorably to spare satellites. This is especially true for high satellite failure

rates. They consider three OOS CONOPS: traditional, depots, and pods. The tradi-

tional concept features a servicer that launches along with all its necessary resources.

The depot concept contains depots positioned around the constellation that provide

fuel or service to the mobile servicer. It provides a significant improvement over

the traditional concept, but its design greatly depends on the configuration of the

customers’ constellation, creating a complex traveling salesman problem [3]. Lastly,

the pods concept features proliferated modules that contain fuel and parts, located

throughout the constellation. The servicer carries its own fuel supply and tools nec-

essary to provide service. When a customer satellite needs service, the servicing ve-

hicle captures the closest pod and then performs a rendezvous operation to intercept

the customer. The pods concept, originally introduced by SpaceLogistics/Northrop
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Grumman as their mission extension pods program, was originally designed for OOS

in GEO [62]. Determing that the pods concept provides the clearest advantage for

OOS in LEO, Luu et al. focus on this concept.

Figure 2.6: OOS Pod CONOPs [3]

Using multi-attribute utility theory (MAUT) to consider the various qualities

that contribute to OOS performance, they include timeliness, number of servicing

events, and mass delivered. Included in their trade-space is both chemical and electric

propulsion, as well as varying altitude and satellite failure rate. They compare the

utility of the pods concept with ground spares and orbital spares. In the scenario

where all attributes are weighed equally, they find that OOS provides no benefit

over the spare strategies. When timeliness receives the highest weighting factor,

OOS with chemical propulsion provides better utility over spares when the number

of spares is low, especially when relative to the number of satellites. In most cases,

however, spares are still the dominating strategy. In scenario 3, when the number of

servicing events receives priority, OOS provides much greater utility than alternative

spares. These results suggest that OOS could be useful for providing a large number

of inspections when fusing electric propulsion. Lastly, scenario 4, which focused on

mass delivered, found that spares provide greater utility. When the failure rate is

increasing from 30% to 45%, there was a greater advantage for OOS for scenarios 1

and 3.
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Table 2.3: Tradespace Scenarios [3]

Observation 9.1: Proliferated CONOPs
Proliferated, scheduled services improve feasibility of OOS in LEO compared

to sparing strategies in some scenarios

Leveraging J2

The same work that considered proliferated pods to improve OOS CONOPs in LEO

also includes orbital maneuvering that leverages J2 [91]. In their CONOPs, the

servicer makes a RAAN change to maneuver between clients. Servicers could change

planes by doing so at the poles, but this maneuver is inefficient, especially in LEO.

Due to Earth’s oblate spheroid shape, gravity is higher at the equator. As satellites

in prograde orbit pass over the equator, they slow down slightly and drift towards

the west. Leveraging J2 effects was first proposed by Legge in 2014 [94]. Luu et al.

propose leveraging J2 to assist with RAAN changes by using a Hohmann transfer to

reach a lower altitude and using nodal drift until the servicer satellite has reached the

desired customer plane. Luu et al. determine that this strategy improves maneuvering

within LEO.

In their 2022 conference paper, Geiman and other authors from Orbit Fab note

that there are clusters of potential refuel customers in LEO, positioned on various

planes and inclinations [95]. They advocate for a shuttle and depot concept that

optimizes depot placement relative to these clusters. Like Luu et al., they suggest
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Figure 2.7: Orbital Phasing [3]

using RAAN drift to deliver both depots and fuel shuttles across orbital planes in

order to reduce delta-v needs. This maneuver is sufficient if the customer doesn’t

mind waiting longer for service.

Figure 2.8: Depot Drift Time vs. Orbit and Delta-V [95]

O’Leary et al. present a comprehensive refueling architecture for Active Debris

Removal (ADR) vehicles centered around debris clusters in Low Earth Orbit [81]. The
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study identifies three major delta-V clusters containing approximately 445 high-risk

debris objects, representing over 50% of debris mass in LEO, and proposes a Depot-

Shuttle refueling infrastructure positioned within these clusters to enable repeated

debris removal missions. By leveraging J2 perturbation effects to optimize RAAN

drift timing and minimizing delta-V expenditure through strategic depot placement,

their analysis demonstrates that refueling can reduce total debris removal costs by

up to 80% (from $16.1B to $3.3B) while reducing the number of required rocket

launches. The architecture enables hybrid propulsion or chemical propulsion ADR

vehicles to perform multiple debris removals throughout their 15-year operational

lifetime by refueling after each mission, dramatically improving the economics of

large-scale debris remediation compared to single-use ADR vehicles.

Observation 9.2: Leveraging J2 Perturbations
Leveraging J2 improves feasibility of OOS maneuvering in LEO

Cooperative Maneuvering

Ikeya and Ho compare fuel requirements for traditional, non-cooperative OOS with

cooperative OOS for a multi-plane and multi-target case study in LEO [4]. In the

cooperative OOS CONOPs, both servicer and customer spacecraft can maneuver to-

wards each other. In semi-cooperative CONOPs, the servicer and customer perform

either phasing or inclination change. Ikeya et al. derive an analytic relationship for

the mass ratio (final servicer mass/initial target mass) that makes cooperative ma-

neuvering more efficient than non-cooperative maneuvering. They assume all vehicles

use chemical propulsion and they don’t optimize refueling schedules. Varying target

number and inclination, they assess the sensitivity of this derived condition. They

determine that if the ratio of final servicer mass and initial customer mass is greater

than the critical mass ratio, then cooperative maneuvering saves fuel. This is the case

when the servicer is heavy compared to its customers.
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Figure 2.9: Cooperative Manuevering in LEO [96]

Other researchers, such as Zhao et al., have also studied cooperative multi-customer

refueling CONOPs for LEO [96]. Zhao et al. include J2 perturbations in their for-

mulation and include constraints to account for surplus propellant on the customer

satellites. The develop a mixed integer nonlinear programming (MINLP) model to

represent their refueling scenario. To solve it, they proceed to develop a two-level

hybrid optimization method that pairs a hybrid encoding genetic algorithm (HEGA)

with linear relative dynamic equation to incorporate the J2 effects. Just like Ikeya et

al., Zhao et al. find that cooperative maneuvering is most efficient when services are

much heavier than the customers. Overall, they found that cooperative maneuvering

offers propellant cost savings in most cases. They suggest considering many-to-many

OOS CONOPs for future work.
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Observation 9.3: Cooperative Maneuvering
Cooperative orbital maneuvers, for certain ratios of servicer/customer mass,

reduces fuel requirements for one-to-many OOS in LEO when customers and

servicers use chemical propulsion

Collection

GEO remains the more popular option for on-orbit servicing and ADR thanks to

the scientific value and long life cycle of GEO-based satellites. Another component

making GEO so attractive is its graveyard of defunct satellites. By taking the option

to push end-of-life satellites into higher orbits, spacecraft operators have created

future possible value for themselves because the asset is still recoverable. If this

principle could be applied to LEO, could there be greater value for LEO-based on-

orbit servicers? Obviously, graveyard orbits aren’t an option for LEO, but what

about “landfill” collection hubs? Literature on the logistics of collection-as-a-service

(CAAS) is limited, but a few researchers have noted its potential.

Share My Space is a French SSA company that specializes in real-time traffic map-

ping and satellite logistics support. Their 2017 conference paper, entitled “Systematic

space debris collection using Cubesat constellation,” details an incremental method

of using constellations of 6U ion-thruster cubesats to collect small space debris and

bring it to temporary collection centers on orbit [16]. At these collection centers,

debris could be recycled, refueled, repaired, or reused, depending on the state of the

debris and the availability of OSAM technology. Eventually, this system could scale

up to handle large debris. Lucken et. al claim that “once the debris are concentrated

in just a few on-orbit storage sites, it will be much easier to deal with them on the

long term, for instance by reprocessing them on a space station in LEO... or send

them to the Moon to sustain future lunar economy” [16]. The paper cites the ISS

ATV and Bigelow inflatable as examples of existing space structures that could serve
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as a collection module. The paper speculates about the effectiveness of these collec-

tion centers, but doesn’t elaborate on where they should be located, how many there

should be, their capacity or their modularity.

In their journal paper about electrodynamic propulsion vehicles for LEO debris

removal, Levin et. al note that collection could be an alternative to deorbiting,

specifically in the crowded regions at high inclinations [15]. Levin et al. note that

EDDE vehicles could corral a yearly 30 tons of space debris that, if recycled at an on-

orbit facility, could help pay for their own removal. Collection could not only serve

as a market mechanism, it could also help mitigate risks associated with reentry,

especially for large objects [15].

Observation 9.4: Temporary Abandonment
Collection-as-a-service (CAAS) replicates GEO’s option for temporary aban-

donment (via graveyard orbit) and could create the economies of scale neces-

sary to incentivize on-orbit servicing. The collection hub concept provides value

through flexibility because it retains satellite value and gives the collector op-

tions for future reuse or recycling.

Spare Strategies & OOS

Queuing theory and inventory management are critical space logistics subfields for

both on-orbit servicing and spare replacement. Repairing satellites using spare parts

and replacing satellites with spares requires many of the same tools and techniques.

In their journal paper “Semi-Analytical Model for Design and Analysis of On-Orbit

Servicing Architecture,” Ho et al. combine queueing theory with inventory manage-

ment techniques to develop a semi-analytical model that demonstrates the ability to

assess the performance of an OOS system (that provides part replacement) without

depending on computationally expensive simulations [97]. The authors note that

modular and standardized satellites will give rise to improved OOS systems and bet-
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ter space sustainability. They recommend using permanent and reusable servicers

over disposal servicers with a pre-defined mission.

Observation 9.5: Space logistics
Borrowing concepts from logistics, queuing theory and inventory management

could improve the design of space infrastructures

LEO CONOPs Summary & Gap

Proliferated CONOPs don’t sufficiently motivate OOS in many cases, providing ben-

efit only when failure rates are high and priority is placed on timely inspections.

Cooperative maneuvering leads to lower propellant costs in cases where the servicer

is much larger than the customer satellites, but researchers have only considered a

one-to-many concept and have not included electric propulsion in their formulation.

The majority of mega-constellations use electric propulsion, so this does not provide

a clear conclusion. Changing orbital planes by leveraging J2 perturbations is helpful,

but doesn’t resolve all the difficulties of maneuvering in LEO. Collection hubs could

provide sufficient economies of scale, but there is very little investigation into the

concept. While some developments in LEO-based OOS are promising, they struggle

to compete with the present business practices of launching cheap, short-lived satel-

lites and deorbiting them as needed. Furthermore, satellite constellation operators

are disinclined to make their satellites refuelable or repairable on Earth if there are no

active service-providers in space. Likewise, would-be OOS providers are not inclined

to launch infrastructure unless satellites are capable of being refueled or repaired in

space.
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Observation 10: Servicer-Customer Chicken-Egg Problem
The OOS market in LEO suffers from a coordination failure where satellite

operators won’t invest in serviceable satellites without available services, and

service providers won’t invest in infrastructure without serviceable satellites,

preventing mutually beneficial OOS markets from emerging.

Motivating Question 3
How to better incentivize OOS in LEO?

2.8.3 Understanding the Needs of Mega-Constellations

For customers, OOS functions to mitigate random satellite failure, resupply con-

stellations, and provide flexibility against uncertain demand. OOS can also allow

spacecraft operators to reduce safety and redundancy requirements [3]. Flexible re-

configuration allows spacecraft operators to mitigate the risks associated with random

failures and uncertain demand [98] [99]. OOS could further enhance operators’ ability

to reconfigure their constellation and evolve with changing demand.

Mitigating the risks and consequences associated with satellite failure is a chief

concern for satellite constellation operators. The FCC’s $150,000 fine against Dish

for failing to properly dispose of its EchoStar-7 satellite set a precedent for penaliz-

ing satellite operators who violate their end-of-life licensure agreements [13]. Future

penalties may far exceed this amount, especially as the orbital environment becomes

increasingly congested. OneWeb has demonstrated its commitment to responsible

operations through its partnership with Astroscale on the ELSA-M demonstration

mission, which will remove a defunct OneWeb satellite from orbit [100]. Currently,

ADR services to LEO are relatively expensive since they involve one-off missions to

specific orbital locations. The ELSA-M mission to remove the OneWeb satellite will

cost a total of $48 million [101]. Achieving economies of scale for LEO ADR missions

remains challenging due to the complexities of orbital maneuvering. Satellite constel-
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lation operators stand to benefit from developing more cost-effective CONOPS for

contracted ADR missions, particularly since they may face mandatory ADR require-

ments in the future, either through direct regulation or because accumulated orbital

debris creates collision risks that prevent new satellite deployments. Kuiper has ex-

pressed concern about the stringency of current failure penalties, recently petitioning

the FCC to reform or eliminate the 5-year deorbit requirement, calling it “artificial

and rigid” [102] [103]. This suggests growing industry apprehension about compliance

costs as nascent constellations scale up. Developing more cost-effective failure miti-

gation strategies would improve industry-wide compliance and orbital sustainability.

Observation 11: Satellite Constellation Operator Priorities
Satellite constellation operators are primarily concerned with consistent cover-

age and keeping costs low.

OOS and ADR are relatively new failure mitigation strategies for mega-constellation

operators. If collecting and disposing of failed satellites is not required, satellite oper-

ators are inclined to rely on established methods to replenish their constellations and

maintain consistent coverage. In their conference paper from 1999, Cornara et. al

compare the usefulness of three spare strategies: launching replacements as needed,

placing orbital spares, and placing spares in a parking orbit [104]. Many of these

strategies are tested and well-understood. Iridium, for instance, already uses the

orbital spare strategy.

Observation 12: Sparing Strategy Competition
OOS competes with other LEO constellation strategies such as overpopulation

sparing, on-orbit spare depots, and flexible reconfiguration.

Recent developments further improve the spare strategy. In their paper, “Opti-

mal satellite constellation spare strategy using multi-echelon inventory control with

stochastic demand and lead times”, Jakob et al. implement a multi-echelon (s,Q)-type
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inventory program to improve satellite constellation spare strategy [14].

In-plane spares
Ready to replace failed satellites

Earth

Multi-Echelon
Sparing Strategy

Active Satellites

Ground spares
Replace failed satellites if 

there are no in-plane spares

Spare 
warehouse

Resupply
In-plane
spares 

Figure 2.10: Multi-Level Spare Strategy

Their architecture models the customer constellation after OneWeb and includes

“warehouses” at lower parking orbits and “retailers” at each orbital plane of the mega-

constellation it services. The warehouses leverages J2 effects to “drift” between orbital

planes over time, delivering orbital spares to each plane as orbital spares maneuver in-

plane to replace randomly failing satellites. Modeling satellite failures with a Poisson

distribution, they use genetic algorithms to minimize maintenance cost of the mixed

integer non-linear programming problem, accounting for performance requirements,

orbital characteristics, and location policies. Their optimal solution reveals the cost

efficiency of batch launches and demonstrates the flexibility of warehouses at multiple

parking orbits.

Jakob et al. assume that in-plane spares are immediately available, which is true
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for an overpopulated orbit, but not necessarily true if the satellite is located slightly

off-plane to prevent collisions, in which case, the satellite would be available in about

two days [14]. They disregard this delay in their model. They also assume that the

closest parking spare warehouse delivers to the orbital plane in need and that launches

only deliver resources to a single parking orbit. Lastly, they assume that there is only

one active delivery at a time and that spares are launched in batches.

Making a number of assumptions for fixed simulation parameters, they assign the

annual satellite holding cost to be 0.5 M US$ per satellite per year. Using OneWeb

satellites as their use case, they assume satellite dry mass to be 150 kg, satellite

manufacturing cost to be 0.5 M US$ per satellite, and launch capacity to be 34

satellites.

Figure 2.11: Inventory Spare Strategy [14]

While researchers have considered spare parts in the context of on-orbit servicing

[97], no one has considered combining the multi-echelon spare strategy with the col-

lection hub concept. The multi-level spare concept already includes a warehouse of

spare satellites located at a parking orbit, but these satellites do not necessarily have

to be brand new. If old satellites are returned to these collection hubs and refueled

for future use, they could replenish constellation supply with less need to launch re-

placements from Earth. This novel concept would still provide the timely satellite

replacement in the event of failure while providing all the long-term sustainability
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benefits of on-orbit servicing. Furthermore, if these spare warehouses could dock and

refuel ADR vehicles, there would be less need to launch one-off, single-use ADR ve-

hicles directly from Earth. Docked on a parking orbit warehouse, they could respond

to satellite failures as needed.

Motivating Question 4: Private Sector Incentivization
How can LEO-based OOS CONOPs be combined with strategic sparing

CONOPs to motivate private satellite constellation operators?

2.8.4 Graveyard Orbits and the Value of Temporary Abandonment

The key to motivating private satellite constellation operators to embrace LEO-based

On-Orbit Servicing (OOS) lies in the ability to seamlessly integrate with existing

strategic sparing approaches while incrementally building future opportunities for

OOS. Taking inspiration from GEO operations, where graveyard orbits preserve the

recoverable value of temporarily abandoned assets rather than permanently disposing

of them, LEO can adopt a similar philosophy through dual-purpose spare warehouses.

Bringing GEO satellites back from the dead has been demonstrated multiple times

with Northrop Grumman’s Mission Extension Vehicle program. MEV-1 performed

the first-ever commercial spacecraft docking with Intelsat’s IS-901 satellite in the

graveyard orbit in 2020, then brought it back into operational GEO service for five

years [105] [106]. In April 2025, MEV-1 completed its service mission and success-

fully undocked from IS-901, marking the first undocking between two commercial

spacecraft in the GEO graveyard. MEV-2 also successfully docked with another In-

telsat satellite, IS-10-02, in 2021 for a similar five-year life extension service. Other

graveyard-salvage missions have also been proposed, such as the ESA contract with

D-Orbit for their RISE mission [107]. Slated for 2028, RISE will demonstrate safe

rendezvous and docking with geostationary satellites and conduct its demonstration

phase by rising to the geostationary graveyard orbit to rendezvous with a client satel-
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lite.

While graveyard orbits in LEO are neither safe nor practical, it could be possible

to store satellites for extended periods of time onboard a spacecraft. The multi-

echelon sparing strategy already establishes spare warehouses in parking orbits that

leverage J2 perturbations to drift between orbital planes, creating an efficient resup-

ply network for constellation operators. By extending these warehouses to serve as

collection hubs, operators gain access to a middle-of-the-road option that mirrors

the value preservation principles of GEO graveyard orbits. Just as GEO operators

maintain future servicing missions to recover assets from graveyard orbits because

they retain recoverable value, LEO collection hubs would concentrate temporarily

retired satellites in specific orbital locations, creating economies of scale that reduce

individual mission costs.

This dual-use approach capitalizes on spare warehouses’ existing capability to

house space assets for extended periods. Rather than immediately deorbiting failed

or obsolete satellites, operators can defer disposal decisions while waiting to see if

evolving business cases make servicing economically viable. The concentration of

multiple satellites in a few orbital locations creates the critical mass necessary for cost-

effective servicing operations, much like how spare parts warehouses achieve economies

of scale through centralized inventory management.

For constellation operators, this approach reduces risk while maintaining opera-

tional flexibility. They can continue their sparing strategies while gaining optionality

for future value recovery, therefore preserving the possibility that technological ad-

vances or changing market conditions could make satellite refurbishment, component

harvesting, or other servicing activities profitable. This incremental approach to asset

disposal aligns with private sector risk management practices while establishing the

infrastructure foundation necessary for sustainable LEO operations.
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Observation 13: Collection Hub Concept
A middle-of-the-road option between deorbiting and servicing in space could

involve collection hubs that temporarily retain satellites before Earth return

or refurbishment, creating economies of scale and reducing individual mission

costs.

2.8.5 Enabling Technology for Earth Return

The fundamental advantage of LEO collection hubs lies in the operational flexi-

bility they provide constellation operators through multiple disposal and value re-

covery pathways. By concentrating satellites in orbital warehouses, operators pre-

serve decision-making optionality while market conditions and technology capabili-

ties evolve. If refurbishment never proves economically viable, operators retain the

straightforward option to deorbit the entire satellite collection in a controlled manner,

achieving debris mitigation objectives without additional complexity. Alternatively,

operators can incrementally upgrade warehouse capabilities to provide in-space ser-

vicing and directly recommission collected satellites in orbit as servicing technology

matures. The most intriguing intermediate option involves returning collected satel-

lites to Earth for ground-based refurbishment. While individual LEO satellites are

too inexpensive and proliferated to justify dedicated return missions, the economics

fundamentally change when satellites are concentrated in collection hubs. Emerging

reusable second stage technologies under development by SpaceX and Stoke Space,

along with reusable entry vehicles like Dragon capsules and Sierra Space’s Dream

Chaser, are creating new possibilities for bulk satellite return operations. The op-

erational efficiency of this approach becomes particularly compelling when satellite

return can be integrated with routine warehouse resupply missions, effectively uti-

lizing the return leg of logistics flights that would otherwise carry minimal payload.

Stoke Nova is actively developing a reusable second stage that leverages both its inher-

44



ent reusability advantages and its downmass capabilities [108]. In their independent

investment guide, the company highlights how their reclosable payload bay design

enables the capture and return of spacecraft to Earth. Stoke explicitly positions this

capability as enabling the reuse and refurbishment of space assets, describing it as a

critical technology for advancing more sustainable space operations.

This Earth-based refurbishment pathway could provide the critical missing link

in resolving the chicken-and-egg problem that currently constrains the OOS business

case. If satellites are routinely returned to Earth for refueling, component replace-

ment, and payload upgrades, spacecraft manufacturers gain clear economic incentives

to design satellites with modular architectures, standardized interfaces, and enhanced

serviceability features. This design evolution would simultaneously enable more cost-

effective ground-based refurbishment and lay the technological foundation for eventual

space-based servicing operations. For instance, the Orbit Fab RAFTI refueling port,

already at TRL 8, was intentionally designed to streamline on-Earth refueling as

well as space-based refueling. Spacecraft designed for easy space-based refurbishment

would also streamline Earth-based refurbishment.

During its operational lifetime, the Space Shuttle program returned several satel-

lites to Earth for study, repair, or refurbishment for redeployment, as summarized

in Table 2.4. Although Earth-return ended with the retirement of the Shuttle, these

early missions demonstrated both the technical feasibility and the scientific value of

recovering spacecraft. In the case of the refurbished and resold Westar 6 and Palapa

B2 satellites, the insurance company covering the two spacecraft recovered $50-60

million of its $150 million loss [109], paying $10.5 million to NASA and Hughes for

their rescue and recovery [110]. Aside from reuse, returned satellites provide oppor-

tunities for forensic analysis, investigations of on-orbit degradation, and assessments

of how service lives might be extended. In some cases, returned satellites could be

salvaged for parts or materials.

45



With the private sector now driving launch costs far below those of the Shuttle

era, and with companies developing fully reusable rockets that are expected to offer

competitive downmass capabilities, Earth-based refurbishment has re-emerged as a

plausible strategy for extending the life and utility of satellites in low Earth orbit.

Furthermore, thanks to advancements in autonomous RPOD capabilities, retrieving

satellites in space is far easier than it was during the space shuttle period.

Table 2.4: Spacecraft Retrieved by Space Shuttle and Returned to Earth

Spacecraft Retrieval
Mission

Details Refurbishment & Reuse

Westar 6 STS-51-A (Dis-
covery) Nov 16,
1984 [111]

Communications satel-
lite stranded in wrong
orbit due to Payload
Assist Module (PAM)
upper stage failure
[111]

YES - Refurbished and relaunched as
AsiaSat 1 by Hong Kong-based AsiaSat on
April 7, 1990, aboard Chinese Long March 3
rocket [111]

Palapa B2 STS-51-A (Dis-
covery) Nov 16,
1984 [111]

Indonesian commu-
nications satellite
stranded in wrong
orbit due to PAM-D
upper stage failure
[111]

YES - Refurbished and relaunched as
Palapa B2R by Indonesia on April 13, 1990,
aboard Delta rocket from Cape Canaveral
[111]

LDEF (Long
Duration Ex-
posure Facil-
ity)

STS-32
(Columbia)
Jan 12, 1990
[112]

Materials science plat-
form with 57 exper-
iments testing long-
term space exposure
effects on materials,
components, and sys-
tems [113]

NO - Designed for reuse but never re-
flown. The structure itself was treated as an
experiment and intensively studied. Data pro-
vided baseline for ISS design and future space-
craft [114]. LDEF was designed to be reusable
but was never reflown [115].

EURECA
(European
Retrievable
Carrier)

STS-57 (En-
deavour) June
24, 1993 [116]

ESA microgravity
research platform with
15 experiments in
materials/life sciences,
space physics, and
astrophysics [117]

NO - Designed for reuse but never re-
flown. Was designed to fly five times with dif-
ferent experiments, but following flights were
cancelled [118].

SFU (Space
Flyer Unit)

STS-72 (En-
deavour) Jan
13, 1996 [119]

Japanese reusable
spacecraft with ma-
terials science and
biological experiments
[120]

NO - Refurbished for museum display
only. Transported to Japan and refurbished
for display at National Museum of Nature
and Science in Tokyo [121]. Designed to be
reusable to save money but never reflown [121]

The transition pathway from Earth-based to space-based servicing offers a risk-

managed approach to circular space economy development. As satellites become

increasingly designed for repair, featuring swappable payloads to address technology

obsolescence and enhanced longevity, the business case for in-space servicing strength-

ens. Ground-based refurbishment operations would generate the demand signals, sup-

ply chain development, and technical expertise necessary to support eventual orbital
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servicing infrastructure.

However, significant uncertainties remain regarding the costs, technical feasibil-

ity, and timeline for satellite return operations using reusable launch systems. The

maturation of reusable second stage technology represents a notable source of uncer-

tainty that could impact the viability of this approach. Nevertheless, the temporal

characteristics of the collection hub concept may naturally align with these technol-

ogy development timelines. Given the inherently slow pace of RAAN change via J2

perturbations, warehouses will require years to accumulate substantial satellite collec-

tions. This extended timeline provides opportunity for reusable return technologies

to mature and demonstrate operational reliability before large-scale satellite return

operations become necessary.

There are other challenges related to modeling downmass capability and avail-

ability, such as downmass payload capacity. While difficult to predict exactly, this

framework assumes that download payload capacity is approximately one third of

its upmass payload capacity based on SME insight. Another challenge of modeling

reusable second stages is predicting what percentage of the launch vehicle fleet will

feature reusable second stages and how the presence of a downmass business case may

impact this percentage, since launch providers would then have a secondary revenue

stream for their rockets and thus another reason to make their second stages reusable

aside from their own operational cost benefits.

Several researchers are working to better understand the business case for reusable

second stages and predict their adoption in the coming decades. In “An Economic

Case for Distributed, On-Demand Orbital Down-Mass Systems,” Boysen et al. inter-

viewed subject matter experts to forecast downmass services between 2030 and 2040

[122]. Their analysis identified large, low-frequency downmass systems as the primary

market drivers, while also recognizing pharmaceutical, biotech, medical, and defense

applications that could generate demand for smaller, on-demand, customized down-
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mass solutions. The researchers noted that developments in space manufacturing

supply chains could further expand these use cases.

Observation 14: Emerging Technologies for LEO Return
Returning satellites to Earth for scrap or future refurbishment is becoming

increasingly possible due to progress in reusable second stages and reusable

capsules (Dragon capsule, Sierra Dream Chaser, Stoke, Starship, etc.). LEO

satellites are too cheap and too proliferated to justify individual return mis-

sions, but batch return could prove viable. However, the costs and timeline of

returning satellites back to Earth on a reusable second stage are highly uncer-

tain.

Although the study did not specifically identify returning old satellites to Earth

as a market segment, it did recognize downmass applications related to space station

component repair, failure analysis, and disposal operations. The authors also observed

that the growing population of orbital transfer vehicles signals an emerging in-space

logistics network with distributed transportation and multiple destinations, which

could drive demand for smaller, on-demand return services. They argued that current

downmass capabilities for such applications are inefficient because they are intended

for human occupants, and that addressing these inefficiencies could significantly re-

duce costs for cargo-only operations. The study noted that Starship’s anticipated full

reusability will drive down return costs alongside launch costs, forcing smaller oper-

ators to both reduce their prices and differentiate through specialized niche services.

Collection-as-a-Service (CAAS) exemplifies the type of innovative space logistics ap-

plication that Boysen et al. predicted would drive demand for distributed, on-demand

downmass services. Reusable second stage vehicles can efficiently combine upward lo-

gistics (resupply the orbital warehouses) with downward logistics (returning collected

satellites) in the same mission cycle. This dual-purpose mission profile is an example
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of a distributed in-space logistics network that maximizes operational efficiency while

addressing the growing need for both orbital resupply and debris removal, contribut-

ing to the circular space economy.

2.8.6 Gaps and Proposed Solutions

The existing literature on LEO-based on-orbit servicing reveals two critical knowl-

edge gaps that fundamentally limit our understanding of sustainable space operations.

First, while theoretical proposals for collection-as-a-service concepts exist, no compre-

hensive feasibility analysis has examined the economic viability of collection hubs in

LEO or systematically evaluated the operational options these infrastructures provide

to constellation operators, such as docking ADR vehicles to retrieve failed satellites,

collecting satellites to be brought back to Earth, or upgrading the warehouses to ser-

vice satellites in space. The absence of a cost-benefit assessment leaves the business

case for on-orbit collection hubs largely unsubstantiated.

The O’Leary et. al. refueling hub concept shares architectural similarities with

the collection hub concept [81]. Both approaches utilize strategically placed orbital

infrastructure leveraging J2 drift to enable efficient operations across multiple orbital

planes and utilizing depots for multi-use ADR vehicles. However, while Orbit Fab’s

architecture focuses exclusively on propellant resupply to extend ADR vehicle opera-

tional capability, CAAS provides a more comprehensive service suite including spare

satellite storage, spare deployment, and potential refurbishment capabilities. The

CAAS warehouses serve as temporary “abandonment” locations analogous to GEO

graveyard orbits, collecting defunct satellites for potential reuse rather than immedi-

ate deorbiting, thereby creating additional economies of scale for on-orbit servicing

operations. While the O’Leary et. al. refueling hub study focuses on remediation of

existing debris, the collection hub concept is specifically focused on satellite constel-

lation sustainability and creating circular space operations.
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Research Gap 1: Collection Hub Feasibility
No existing literature provides feasibility analysis and cost/benefits assessment

of collection hubs in LEO and the options it provides.

Second, despite growing recognition of the environmental impact of space activ-

ities, existing literature fails to quantify how LEO-based OOS operations compare

to traditional deorbiting practices in terms of atmospheric emissions, representing a

significant gap in our understanding of the true sustainability implications of different

end-of-life satellite management approaches.

The CAAS infrastructure along with its future on-orbit servicing capabilities are

intended to reduce atmospheric emissions by reducing the number of deorbiting satel-

lites and reducing the system’s reliance on ADR vehicles and spare satellites launched

directly from Earth. In order to build and sustain this infrastructure, however, there

will be launches and deorbiting second stages through the atmosphere; not all of

which will be reusable. Therefore, it is important to consider the breakeven point

where reductions in the number of deorbiting satellites offset the additional mass flux

related to sustaining the OOS infrastructure.

Research Gap 2: Environmental Impact Assessment
Existing literature doesn’t consider the impact of LEO-based OOS on atmo-

spheric emissions compared to traditional deorbiting practices.

These knowledge gaps motivate two fundamental research questions that are es-

sential for advancing the field of sustainable space operations. The first research

question addresses the economic dimension: which collection hub infrastructure con-

figuration provides the greatest economic value for OOS providers compared to tra-

ditional practices and other sparing strategies? This question requires systematic

evaluation of various operational architectures, considering factors such as warehouse

number, servicing capabilities, and satellite return options. The second research
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question tackles the environmental dimension: which collection hub infrastructure

configuration achieves the greatest reduction in atmospheric emissions and increase

in satellite lifetimes compared to traditional overpopulation sparing strategies? This

question requires emissions modeling that accounts for launch activities and end-of-

life disposal across different operational scenarios.

Research Question 1: Economic Value
Which collection hub infrastructure configuration provides the greatest eco-

nomic value for service providers and satellite constellation operators compared

to traditional practices?

Research Question 2: Emission Reduction
Which collection hub infrastructure configuration provides the greatest reduc-

tion in atmospheric emissions compared to traditional overpopulation sparing

strategies?

To address both research gaps and questions simultaneously, this research tests

hypothesis 1, included below. This hypothesis directly addresses the first research

gap by providing quantitative feasibility analysis of collection hub operations, while

simultaneously tackling the second gap through comparative environmental impact

assessment, considering sustainability metrics such as NOx emissions, number of de-

orbited satellites, and number of refurbished satellites.

The research approach recognizes that economic viability and environmental sus-

tainability are not necessarily exclusive objectives. This work seeks to identify op-

erational paradigms that could incentivize private sector adoption while advancing

environmental stewardship in space. The hypothesis specifically focuses on multi-

echelon sparing enhanced with collection capabilities because this approach builds

upon a sparing strategy intended to reduce costs for satellite operators, potentially

reducing adoption barriers for the CAAS concept while providing the flexibility nec-
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essary to adapt to uncertain future conditions in both technology development and

market evolution.

Hypothesis 1
Multi-echelon sparing with collection warehouses that strategically retain sal-

vageable assets for future reuse, refueling, or repair, while facilitating ADR

missions and the controlled deorbiting or Earth-return of old satellites via

reusable second stages provide better economic feasibility and sustainability

metrics compared to infrastructures that rely on the overpopulation sparing

strategy and ADR missions launched directly from Earth.

Each satellite can extend out and 
rotate so that robotic arm can 
access all sides

Solar panels retract before 
rendezvousing with the 
collection hub

Optional robotics module 
attaches one robotic arm per 
side that operate along a rail in 
the collection hub

The attached depot contains optional 
spare parts and fuel, which is 
plumbed to the satellites inside the 
collection hub configuration

Dockable ADR Vehicle

Figure 2.12: Illustration of the CAAS Warehouse Concept (artwork by ChatGPT)

Figure 2.12 illustrates the CAAS Warehouse concept, the details of which are

explained in greater detail in Chapter 3. While the exact design and sizing of the

spacecraft is left to future work, this thesis envisions a warehouse that resembles the

starlink payload structure, stowing satellites with their solar panels retracted. The

spacecraft will have docking plates for ADR vehicles and allow for upgraded robotics
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and refueling packages to enable in-space refueling and repair. The warehouse remains

in orbit during a 30-year life cycle and is capable of passing its collection of satellites

to a reusable reentry vehicle.

2.9 Hypothesis 2: Flexibility Frameworks

2.9.1 Flexibility Frameworks

The study of flexibility involves developing and studying novel designs and operations

that could enhance an engineering system’s value by allowing operators to mitigate

risks and take advantage of potential opportunities. Flexibility frameworks improve

value as well as system sustainability and resilience [6]. While robust designs perform

well under many circumstances without changes [123], flexible designs are designed

to adapt to changes [124].

Since the early 2000s, researchers have been proposing flexibility frameworks for a

wide variety of engineering systems and infrastructures. In general, they are composed

of five phases: baseline design, uncertainty recognition, concept generation, design

space exploration, and process management [6]. Flexibility is critical for sustainable

design because it allows for the efficient use of resources in the face of high uncertainty.

Compared to traditional design methods, flexible engineering design can improve

economic and social performance by 10-30% or even more [6]. Rather than finding

an optimal design for one future projection, it considers multiple future scenarios

and improves the distribution of outcomes. Flexibility analysis measures flexibility

value and compares the value of different flexible options. Typically, engineers are

accustomed to equating uncertainty with risk – and when they do not include system

flexibility, this equation holds [10]. Flexible designs, however, leverage uncertainty to

improve system value and performance.

While the exact vocabulary differs in the literature, a flexible design question is

twofold: how is the system designed to be flexible, and what design or operation must
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exist to enable future flexibility? The former is called a strategy [6], a real option

“on” a system [125], or a type [126]. The latter is called an enabler [6], a real option

“in” a system [125], or a mechanism [126]. Some strategies are better at mitigating

downsides, while others are better at taking advantage of upswings. The study of

different strategies and enablers, along with their costs, forms the basis of a flexibility

framework.

strategy enabler
real option “on” a system real option “in” a system

type mechanism

The study of flexibility is rooted in Real Options Analysis, which quantifies flex-

ibility value in large-scale, unalterable investment decisions. Real Options Analysis

(ROA) got its start in finance, where Myers first introduced the idea as an investment

decision making tool for real assets [127]. Myers’ Real Options concept adapted the

Black-Sholes equation, provided below, which approximates the value of a financial

option [128]. C is the call option price, St is the asset spot price, t is time to matu-

rity, sigma is volatility of the asset, K is strike price, and rF is the risk-free rate. The

Black-Scholes equation includes a number of assumptions to represent the call option

cash flow as a stock purchased with borrowed money. Cox paired a simplified version

of the Black-Scholes equation with binomial lattice analysis to provide a simple way

of pricing financial options. [129].

C = N(d1)St − N(d2)Ke−rF t (2.1)

d1 =
ln St

K
+ t(rF + σ2

2 )
σ

√
t

(2.2)

d2 = d1 − σ
√

t (2.3)

Several industries have adapted ROA for engineered systems, applying the tech-

nique to improve performance for expensive, long-term projects that experience a
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high degree of uncertainty.

2.9.2 Real World Examples

Iridium

Several industries have adapted ROA for engineered systems, applying the technique

to improve performance for expensive, long-term projects that experience a high de-

gree of uncertainty. In some cases, ROA is applied retroactively to determine how

a project might have gone better. Satellite communication company Iridium filed

for bankruptcy in 1999, followed by Globalstar in 2002, thanks to the boom in ter-

restrial cellular networks, which exceeded 1991 expectations by 100% [11]. At the

time that Iridium and Globalstar designed their large LEO communication satellite

constellations, they expected a large demand for mobile satellite services (MSS) since

terrestrial standards were lagging and cellular networks were making only modest

gains. By the time these companies deployed their networks in 1998 and 2000, they

realized their market predictions were greatly over-optimistic. Iridium faced greater

than $4 billion in debt while Globalstar faced $3.34 billion in debt. While demand

for MSS existed, it fell short of their constellations’ capabilities. Failing to meet the

expected demand, Iridium filed for bankruptcy in early 2000s, selling for less than 1%

of their investment [6].

De Weck et. al studied the Iridium case and determined that incremental de-

ployment of lower capacity satellites could have reduced their losses by 30% [11].

Rather than predicting global capacity demand, de Weck et al. introduce a flexible

approach that deploys constellations gradually and with increasing capacity as de-

mand increases. This approach reduces the possibility of economic losses associated

with overly-optimistic projections. Additionally, they show that making constella-

tions re-configurable also improves potential economic benefit, specifically in cases

with high uncertainty. However, one detriment of flexible, incrementally-deployed

55



constellations is the associated cost of flexibility. Designers must be able to justify

the cost of flexibility in their infrastructure design. Within this framework, the au-

thors use Real Options Analysis as their analytical method to determine flexibility

value. Incremental and re-configurable satellite deployment is an example of real op-

tions because it provides satellite operators with “the right, but not the obligation”

to make a certain decision, such as launching more satellites, improving the capability

of new satellites, moving existing satellites, or not doing anything at all.

As De Weck et al. demonstrate with their analysis on the Iridium constellation,

flexibility frameworks are particularly useful for capital-intensive projects with a great

deal of uncertainty. On-Orbit Servicing infrastructures certainly fit this description

and stand to benefit from a flexibility mindset when it comes to their design and

deployment.

Observation 15: OOS as Infrastructure Problem
OOS in LEO is an infrastructure problem with multiple sources of uncertainty

including technology development, market demand, and satellite operator will-

ingness to pay for service.

Flexibility in Infrastructure Projects

Across industries and applications, there are several examples of projects that have

successfully implemented flexibility frameworks for their design and rollout. The 25 de

Abril bridge in Lisbon, Portugal is an example of a successful flexible infrastructure.

Originally, the bridge was built with the option to support 4 car lanes and a railway

on the lower platform [130]. Today, the bridge has 6 car lanes and 2 rail tracks.

This strategy deferred additional costs until there was a need for extra capability,

leveraging the time value of money and lowering the Net Present Value (NPV).

The Health Case Services Corporation (HCSC) in Chicago, Illinois is another

example of a flexible infrastructure. Originally built with 27 stories and the possibility
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for future vertical expansion [130], they opted to complete the second phase when

personnel needs increased faster than expected [6].

Figure 2.13: Flexibility Frameworks at Work

In “Enhancing the value of offshore developments with flexible subsea tiebacks,”

Lin et al. consider three different flexibility types to address uncertainty in sub-

sea tiebacks, finding that flexibility improves expected net present value by 76% [12].

They create a flexible option screening methodology capable of handling multi-domain

uncertainty and a large combinatorial design space of strategies and design options

by developing an integrated systems model and pairing it with Monte Carlo simu-

lations and decision rules. They included multiple sources of uncertainty that were

exogenous, endogenous, or a hybrid combination of the two. Lin et al. highlights

the importance of including both types to fully understand the value of flexibility

in capital-intensive projects [12]. The authors also note that interactions between

different flexible options may be more valuable when others are already deployed.

Evaluating multi-level flexibility is useful for large infrastructure projects because it
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identifies advantageous combinations, interactions, and timing of options [12].

Studying water resources in Singapore, Zhang et al. employ integrated real options

to evaluate state-of-the-art water management technology under uncertainty [131]. In

“Analyzing Real Options and Flexibility in Engineering Systems Design Using Deci-

sion Rules and Deep Reinforcement Learning,” Caputo et al. analyze flexibility in a

waste-to-energy system using deep reinforcement learning and discover a 69% increase

in system value [132]. Cardin et al. determined that including incremental phasing,

capacity expansion, and life extension in nuclear power plants amidst uncertain de-

mand and public acceptance leads to better performing designs than those optimized

with rigid strategies [133]. In a space logistics application, Chen et al. pairs network

flow space logistics with decision rules in their multi-stage stochastic program to an-

alyze ISS resupply and uncertain launch delays [134]. These framework examples

are hardly exhaustive. Other applications include On-Shore LNG Production Design

[135], on-demand vehicle-sharing, [136], power expansion generation planning [130],

oil platform development [137], parking garages [138], and an IEEE 30 bus system

[139], to name a few.

Observation 16: Flexibility Framework Success
Flexibility frameworks have been applied to analogous infrastructure projects

and have identified options that bring additional value and reduce risk.

In these flexibility applications, both implemented and proposed, researchers have

uncovered opportunity within uncertainty. Reducing infrastructure expenses and pro-

viding flexibility as a service could improve the feasibility of OOS from both the

satellite-operator and service-provider perspectives.

Motivating Question 5
Could flexible options improve the demand for OOS in LEO?
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2.9.3 Flexibility Frameworks for OOS

This thesis is not the first research effort to apply flexibility frameworks to OOS or

consider the value of flexibility in the design of OOS systems. Recently, in their paper

leveraging UMPIRE software to evaluate the value of refueling for several case studies,

Burkhardt and fellow Orbit Fab authors argue that refueling satellites provides value

via flexibility, allowing LEO constellation operators to re-configure to match evolving

demand [140].

In the early 2000s, before the development and demonstration of OOS infras-

tructures, Saleh, Lamassoure, and Hastings authored a number of publications on

flexibility in OOS [141] [142] [10] [9]. In their thesis, Saleh characterizes the nature,

costs, and benefits of flexibility within space systems [143]. Elaborating on the im-

portance of matching design lifetimes with the cycles of its dynamic environment,

Saleh explains how OOS allows spacecraft operators to make decisions that better

respond to an evolving environment. Later on, shortly after the Orbital Express mis-

sion, Nilchiani et al. proposed a framework that includes six fundamental elements

to systematically analyze and measure flexibility within engineering space systems,

using the Orbital Expression mission as their use case [144]. This framework adapts

a similar set of assumptions and methods as those used by Saleh, Lamassoure, and

Hastings. To the author’s knowledge, these publications are the extent of academic

work on OOS-specific flexibility frameworks.

In their series of papers and theses, Saleh, Lamassoure, and Hastings challenge

the traditional approach of determining OOS feasibility, which was to compare the

cost of servicing with the cost of launching a new spacecraft. As Saleh et al. point

out, cost uncertainty obscures the truthfulness of these findings and the traditional

approach neglects to consider the value of flexibility from the satellite-operator per-

spective [141]. The authors therefore propose a new approach that considers the value

of servicing from the customer’s perspective, essentially establishing the maximum
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price that a customer would be willing to pay for servicing [141]. While focusing on

customer perspective is useful for studying max price, it neglects to consider how flex-

ibility could improve the rollout of the actual OOS infrastructure. This thesis seeks to

consider both perspectives, making the simplifying assumption that the satellite con-

stellation operator is also the owner/operator of the OOS servicing infrastructure that

exclusively services its own constellation. This assumption is motivated by observed

industry trends, as major constellation operators (e.g., SpaceX, OneWeb, Amazon)

are increasingly vertically integrated, controlling launch, manufacturing, and ground

infrastructure. Extending this integration to OOS is a natural progression and reflects

emerging business models in the sector. Methodologically, single-entity ownership al-

lows modeling of total system cost without the complexity of inter-firm pricing mech-

anisms, service contracts, or market equilibrium conditions between service provider

and customer, while still modeling the decision rules governing flexible decisions in

both the satellite fleet and servicing infrastructure. While future market evolution

may see specialized third-party OOS providers, this assumption represents a plau-

sible near-term scenario and establishes a baseline model. Extension to multi-party

servicing markets with competitive dynamics represents valuable future research but

would introduce additional layers of complexity beyond the scope of this thesis.

Over the course of two companion papers [141] [142], Saleh and Lamassoure de-

velop a framework capable of identifying which missions benefit the most from OOS.

They model non-deterministic random failures with failure rate λ, following a Markov

process. To generate a cost model, they combine three standard cost estimation rela-

tionships: unmanned spacecraft, rule-of-thumb for industry, and small satellite. They

perform a case study of the Iridium constellation in LEO, considering three different

concepts: design 8-year-life-cycle satellites for replacement, design 8-year-life-cycle

satellites for refuelling, and design 16-year-life-cycle year satellites with no need for

replacement or refueling. In the event of random failures, the satellites are replaced.
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To compare their flexibility framework with traditional methods, they develop

a baseline model to evaluate the effectiveness of OOS. When the concept includes

on-orbit servicing, the optimal baseline solution was to place two servicers per plane.

Baseline results suggest that on-orbit refueling is only attractive under two conditions:

(1) satellites operate at low altitudes where station-keeping demands substantial fuel,

and (2) satellites have very low failure rates with fuel depletion as the dominant failure

mode. Even in these cases, however, the cost uncertainty overshadows the benefit of

refueling. Their flexibility framework improves upon this traditional approach by

considering the flexible value that servicing provides.

Their framework builds on existing flexibility framework methods, such as decision

tree analysis and real options theory to determine flexibility value. They include

options to permanently abandon satellites, replace satellites, service satellites for

life extension, upgrade satellites with new technology, or modify satellites to address

shifting requirements or options. They assume a Markovian process for their uncertain

parameter, which means history of the uncertain variable is not relevant. Saleh et

al. argue that this is a reasonable assumption for exogenous uncertainty because it

still reveals the impact of flexibility. They implement decision points within their

framework where the formulation decides between different modes of operation.

They sum all mission and option costs into a cost metric, including discount rates

for both costs and revenues that account for both certain and uncertain quantities.

Certain quantities, or those attached to a twin security, are discounted with risk-free

interest rate, r. Meanwhile, uncertain quantities, or amounts not attached to a twin

security, have an internal rate of return that adds a risk premium to the risk-free

interest rate. For the sake of convenience, they assume that the risk-free interest rate

is constant throughout the mission timeline. They design their decision model to

maximize future mission value.

They first consider the singular option of life extension, employing the Black-
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Scholes equation. They quantify flexibility value as the difference between Expected

Value and Traditional Value. They note that option value does not exceed the loss it

potentially prevents.

When spacecraft operators choose to service a vehicle, they have enabled the

option to service the vehicle again in the future, called a compound option. Their

formulation includes a matrix of switching costs, dependent on time, that prevents

impossible switches. For instance, abandoned assets can not be serviced again in

the future, so its switching cost is set equal to infinity. At each decision point, the

framework compares the cost and utility of each option and maximizes for expected

value, taking the state of the uncertain parameter into account.

The authors make several assumptions, such as discretizing time into distinct steps

to generalize continuous decision-making in the iterative backward process. They

decide to make operational modes distinct, but this could be adjusted by using an

integral to select from a continuous range of operational modes. Their framework

applies for exogenous uncertainty, such as failures, market behavior, and developments

in technology, which is not impacted by decisions-making.

However, OOS contains endogenous uncertainty as well, such as market dynamics

and interactions between satellite-operator and service-provider. Customer demand

for OOS is sensitive to both external factors and servicer decision-making. Meanwhile,

servicers will make decisions about possible upgrades according to customer demand.

These two agents experience uncertainty that is both dependent and independent of

their decision-making, but this is not accounted for in these OOS frameworks.

Matos de Carvalho et al. recognize the need to capture client/servicer dynamics

and develop an agent-based modeling and simulation (ABMS) framework to better

understand how their relationship impacts OOS [145]. Their ABMS uses a set of

rules, metrics, and characteristics to establish the relationship between servicer and

customer. They create a hypothetical customer constellation and apply their frame-
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work to explore OOS operations such as life extension, refueling, and rescue/recovery.

Finding the client/servicer relationship impact to be nontrivial, Matos de Carvalho et

al. highlight the importance of including multiple perspectives and multiple metrics.

Since servicers are not inclined to make satellites serviceable in space if there are no

available in-space services, and service-providers are not inclined to launch servic-

ing infrastructure if satellites are not designed for in-space servicing, it is critical to

capture the interaction between these two entities.

Observation 17: Satellite Upgrade Decisions
Making satellites refuelable or repairable is critical for OOS viability, but satel-

lite operators are disinclined to do so unless they see immediate value-add. The

timing and conditions for these upgrade decisions significantly impact OOS in-

frastructure rollout.

Regarding their OOS flexibility framework, Saleh and Lamassoure note that the

framework is limited by the accuracy of the probability density functions it samples

for its uncertain parameters. Lastly, the framework defines distinct types of flexible

options but neglects to include the possibility of new modes in the future.

In their companion paper, they apply their flexibility framework to different mis-

sion types to evaluate the usefulness of flexibility in different applications [142]. Due

to fuel requirements and maneuvering time, they find that servicing provides little

benefit for a commercial radar constellation in LEO. For GEO communication satel-

lites, however, they determine that flexibility helps improve capacity. The commercial

LEO constellation case considers uncertain revenue and includes the options to aban-

don or service for life-extension. They represent uncertain revenues with a geometric

walk model with drift and volatility parameters.

First, they consider the sole option of abandonment, assuming that abandonment

costs operators nothing if deorbiting propellant is included in the spacecraft design.
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In this initial study, they determine that traditional methods have underestimated

mission value by failing to include the option to abandon, which increases as system

uncertainty increases.

Figure 2.14: Value of Compound Abandonment [142]

Their second study includes the option to provide service for life extension. With

OOS available, operators can choose to shorten satellite lifetimes to better match the

length of market cycle periods [142]. Based on results from the abandonment only

study, they determine that temporary and irrevocable abandonment have the same

value. However, when the option to service is available, temporary abandonment has

more value. Their framework neglects to consider the value of temporary abandon-

ment when combined with other options. Additionally, these frameworks include OOS

options available in the early 2000s, so they do not include recent developments and

novel concepts for OOS in LEO. Including new options and combinatorial interactions

may reveal greater flexibility value.

Predating these twin journal papers [141] [142], Lamassoure completed a PhD

thesis on the same topic, evaluating the cost-effectiveness of on-orbit servicing and

how the option to service spacecraft could reduce their designed life-cycle [10]. With a

64



similar flexibility framework, they conclude that when spacecraft operators consider

the option for on-orbit servicing, the optimal satellite design point sees a shorter

life cycle. For future work, they suggest including random failure and technology

obsolescence.

In their thesis, Lamassoure explores various options for servicing infrastructures,

including servicing/refueling depots that satellites either directly maneuver to for

servicing or servicing vehicles maneuver to in order to refuel for their next servic-

ing mission to a satellite that remains in place [10]. Lamassoure acknowledges the

costs associated with changing orbital planes and concludes that servicing would be

restricted to an orbital plane, not considering the effect of J2 perturbation. In the

case of satellites maneuvering to the depot for service, they state that the down-time

may be unacceptable. They do not consider possible coordination with multi-level

sparing that would provide an immediate replacement and remediate the long down-

time issue. Overall, they highlight the high risk of collision given the large number

of RPOD maneuvers associated with the depot approach. However, over the last 24

years since this thesis was published, the TRL for RPOD has improved considerably.

Overall, flexibility frameworks prove to be useful for identifying opportunities that

improve the design and deployment of On-Orbit Servicing infrastructures. OOS pro-

vides value to the customer by providing flexibility in their operations. Flexibility in

the deployment of OOS infrastructure itself could provide a better bottom-line to the

service provider, but this has yet to be explored. The existing OOS flexibility frame-

works present a number of other gaps, such as including multi-domain uncertainty,

considering recent developments in CONOPs, and incorporating the combinatorial

effects of flexible options.
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Research Gap 3: LEO Flexibility Frameworks
No flexibility frameworks exist for OOS in LEO that consider multiple sources

of uncertainty, include CAAS/warehouses, or account for both exogenous and

endogenous uncertainties, such as the interaction of decisions between satellite-

operator and service-provider.

Research Gap 4: Incremental Deployment
Previous papers that propose LEO-based OOS concepts do not consider the

merits of incremental deployment of OOS infrastructure that evolves with the

uncertain environment or the consequences of delayed decision-making about

satellite upgrades.

Research Gap 5: Combinatorial Flexibility Benefits
Existing OOS flexibility frameworks do not consider the combinatorial benefit

of multiple flexible options.

2.9.4 Flexible OOS Concepts

Previous OOS Flexibility Frameworks identify a few flexible options, some of which

are included in Table 2.5, but it is necessary to consider what additional options should

be included and how they should be included [10]. Flexible design concepts are com-

posed of two elements: strategies and enablers [6]. Common strategies, sometimes

called real options “on” a system [125] or types [126], are abandonment, investment

deferral, expanding or contracting system capacity, staged deployment, research and

development investment, etc [6]. Enablers, sometimes called real options “in” a sys-

tem [125] or mechanisms [126], represent the actual designs or operations that allow

for flexible option implementation. Enablers require technical understanding of the

system while strategies exist at the managerial level. There are several methods to

determine which options to include in a framework, such as brainstorming, drawing

from industry standards, using options screening, or using holistic methods [126].
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Table 2.5: Space Mission Options [10]

This thesis will borrow from options included in previous OOS flexibility frame-

works, explained in detail in subsection 2.9.3, and supplement them with recent OOS

developments as well as novel concepts. This brings us to Research Questions 3:

Research Question 3: Optimal Flexibility Options
Which flexible option, or set of flexible options, provides the greatest economic

value and environmental benefit for OOS providers under uncertainty?

The collection hub concept, introduced previously, is a flexibility enabler since it

allows the service provider to build its supply of satellites over time and make in-

cremental servicing decisions as the capability becomes available. Similarly, reusable

second stage vehicles that can return satellites back to Earth are also flexibility en-

ablers, since they extend servicing options and provide salvage value in the event the

satellite is brought back to Earth but not recommissioned.

Observation 18: Warehouses and Reusable Second Stages as Flexibility Enablers
Collection warehouses are flexibility enablers that provide options for delayed

upgrades and deployment, allowing adaptive responses to market conditions.

Combining multi-echelon spare strategies, cooperative maneuvering techniques,

and collection-as-a-service, we get the following collection of CONOPs options, con-

tained in Table 2.6 and Table 2.7. Bold cells represent objects or concepts that are

explored in this thesis.
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While there are a number of possible in-space services, like recycling and inspec-

tion, this thesis will focus on refuel and repair services since these are fundamental for

a satellite’s extended occupation in space. Repair services will include both failure

repair as well as payload swap for obsolete satellites. Unlike previous OOS research,

this thesis will include the option for satellite servicing to occur on Earth as well as

in space. The framework will include the following flexible options:

1. Permanently Abandon Satellite (Deorbit)

2. Temporarily Abandon Satellite (Pay for Collection)

3. Receive service for satellite life extension (in space)

4. Send satellite to Earth

5. Receive service for satellite life extension (on Earth)

6. Deploy new collection hub/warehouse

7. Deploy servicing capability to existing collection hub

Previous on-orbit servicing (OOS) flexibility frameworks underestimate the value

of temporary abandonment because they fail to account for its combinatorial benefit

when integrated with other flexible options. Unlike traditional frameworks that treat

temporary abandonment as equivalent to permanent abandonment, the CAAS con-

cept leverages collection warehouses to enable true temporary abandonment, where

satellites can be retrieved and potentially refurbished later when market conditions

become favorable.

The incremental deployment of capability, both in terms of warehouse infrastruc-

ture and satellite capabilities, fundamentally improves the business case for OOS

providers by creating a responsive, adaptive system. This approach enables satellite

operators and service providers to react dynamically to each other’s decisions and
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Table 2.6: Morphological Matrix for OOS/ISAM Part 1: Architecture and Capabili-
ties

OOS/ISAM
Category

Options / Strategies

ARCHITECTURAL ELEMENTS
Regime LEO MEO GEO Multi-Orbit

Parking
Multi-
Regime

Concept One-to-One One-to-
Many

Many-to-
Many

Multi-
Echelon

Proliferated
Pods

Infrastructure
Elements

Collection
Ware-
houses

Mobile
Servicers

ADR
Vehicles

Reusable
2nd Stages

Service pods

Customer
Elements

LEO Con-
stellations

GEO
Comsats

Gov’t
Satellites

Earth
Observation

Scientific
Sats

COMMODITIES & RESOURCES
Warehouse
Commodi-
ties

Collected
Satellites

Bipropellant Monoprop EP Propel-
lants (Kr,
Xe)

Repair
supplies

Servicing
Tools

Refueling
Apparatus

Observation
Sensors

Robotic
Arm

Capture
Mechanism

TECHNICAL CAPABILITIES
Warehouse
Capabilities

Old
Satellite
Storage

Spare
Storage

CP
Refueling

EP
Refueling

Repair

ADR Vehicle
Capabilities

Inspection CP/EP
Refueling

Station
Keeping

Capture Deorbiting

Service
Location

In-Space
Only

On-Earth
Only

Space +
Earth

Mobile/On-
Demand

evolving market conditions, fostering the customer-servicer interaction that previous

frameworks have neglected. Rather than requiring large upfront capital investments

in full servicing infrastructure, operators can gradually build capabilities as demand

materializes and technology advances.

Strategic timing plays a critical role in risk mitigation. Providing OOS capabilities

during a satellite’s disposal period, when the satellite would otherwise be deorbited,

creates a unique risk-benefit profile. If servicing attempts fail during this phase,

operators lose only satellites they would have discarded anyway. This timing strategy

transforms the traditional risk calculus of OOS investments.

While Hypothesis 1 seeks to quantify the value of CAAS relative to other spare
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Table 2.7: Morphological Matrix for OOS/ISAM Part 2: Operations and Flexible
Options

OOS/ISAM
Category

Options / Strategies

OPERATIONAL STRATEGIES
Service
Scheduling

On-Demand Scheduled/
Periodic

Combination Predictive
(Condition)

Emergency
Response

Decision
Timing

Immediate Delayed Staged Contingent Adaptive/
Learning

Rendezvous
Type1

Semi-Coop
(Cust.
moves)

Semi-Coop
(Serv.
moves)

Fully
Cooperative
(both move)

Non-Coop

FLEXIBLE OPTIONS
Option Type Permanently

Abandon
(Deorbit)

Temporarily
Abandon
(Collect)

Service
In-Space
(Refu-
el/Repair)

Return to
Earth

Service on
Earth

Upgrade/
Modify
Options

Payload
Swap

Subsystem
Replace

Propulsion
Add

Software
Update

Structural
Mod

Deployment
Options

Deploy
New
Warehouse

Deploy
New
Servicer

Upgrade
Existing
Hub

Expand
WH
Capacity

Upgrade
Satellites

deployment strategies, Hypothesis 2 addresses a different question: how does imple-

menting flexible options enhance the overall feasibility of the CAAS concept? This

hypothesis specifically focuses on identifying which individual options or option com-

binations provide consistent value across a wide range of uncertain futures. By exam-

ining the synergistic effects of multiple flexible options operating simultaneously, this

analysis aims to determine whether flexibility can transform CAAS from a marginal

spare strategy alternative into a compelling business case for sustainable space infras-

tructure.
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Hypothesis 2
If the flexibility framework models CAAS system evolution, captures uncer-

tainty, and models interactive decision-making, it will identify which flexible

enablers and strategies for both servicing infrastructure and satellite constella-

tion further improve the economic feasibility and sustainability metrics of the

CAAS infrastructure compared to infrastructures that only rely on the over-

population sparing strategy.

2.10 Hypothesis 3: Policy

2.10.1 The Policy Problem: Environmental Impact and Market Failures

The space industry’s environmental footprint is uniquely complex, spanning terres-

trial, orbital, and atmospheric domains. As launch rates accelerate and satellite

constellations proliferate, understanding and mitigating these multi-domain impacts

becomes increasingly critical.

While much of space sustainability research has focused on orbital congestion, a

growing body of work now investigates atmospheric pollution from spacecraft reentry

and burn-up [23] [36] [25]. This concern is compounded by the impact of climate

change, which is altering upper atmospheric composition. This could potentially

lengthen orbital lifetimes and complicate deorbit operations that rely on atmospheric

drag [35].

Despite these growing concerns, atmospheric pollution has not yet constrained

the growth or operations of satellite mega-constellations. Given the nascent state of

research on the matter, private operators are not inclined to stray for the tried-and-

true method of deploying cheap and short-lived proliferated networks of satellites.

Creating regulations to address an environmental issue before it reaches mainstream

attention is inherently difficult. Moreover, as Kuiper’s recent Notice of Ex Parte filing

to the FCC demonstrates, constellation operators show limited willingness to comply
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even with existing orbital protection regulations [103]. To preempt environmental

degradation, it is necessary to establish a compelling business case with sufficient

financial benefits to prompt satellite operators to abandon their make-use-dispose

model.

However, transitioning from linear to circular economies entails significant risk.

Even if the CAAS concept paired with flexibility benefits proves cost-neutral or cost-

advantageous, the private sector will likely require public backing to de-risk the tran-

sition. The Astroscale-OneWeb ADR contract exemplifies this dynamic: the mission

is viable largely due to partial UK government funding [101]. Without demand sig-

nals from governments, sustainability improvements in space operations are unlikely

to materialize organically. Yet subsidizing all sustainable practices would be both fis-

cally prohibitive and politically unpalatable. Effective government intervention must

therefore be strategic, targeted, and aligned with constellation CONOPs to signal

demand without imposing excessive costs or hindering industry growth.

Observation 19: Business Case Gap and Government Intervention
The private sector is unlikely to adopt sustainable space practices without gov-

ernment demand signals.

The following sections explore the current regulatory landscape, evaluate proposed

policy mechanisms for curbing orbital congestion, and examine policy instruments

from analogous industries to identify approaches that could facilitate more circular

systems in LEO.

2.10.2 Current Policy Landscape and Regulatory Gaps

Although launch and orbital activities are subject to regulations such as the FAA’s

1998 Commercial Space Launch Act Amendments and licensing requirements enforced

by the FCC, current frameworks lack provisions addressing upper atmospheric pol-
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lution linked to space operations [146] [2] [29]. Earth’s orbits are not considered a

human environment, and the Montreal Protocol does not apply to the space sector, so

the domain falls outside the jurisdiction of both the National Environmental Policy

Act (NEPA) and the Montreal Protocol [36].

International Space Law and Debris Management

The 1967 Outer Space Treaty, signed ten years after Sputnik, established an agree-

ment for the peaceful use of space and banned nuclear proliferation, but neglected

to include a clear and enforceable definition of space debris [147]. Additionally, the

Outer Space Treaty states that “registry State jurisdiction and control can only be

transferred to another State, not to a private entity,” and that the spacecraft operator

always retains ownership rights. This creates an obstacle for active debris removal

(ADR), since it bars states from interfering with space objects registered to a different

country.

At the international level, the United Nations Office for Outer Space Affairs (UN-

OOSA) and the United Nations Committee on the Peaceful Uses of Outer Space

(COPUOS) are responsible for coordinating best practices and international agree-

ments regarding the use of space. International consensus on space debris policy

proves to be a lingering challenge. As governments implement their own policies,

there is growing concern that private companies will go “forum shopping” if the reg-

ulations in their native country prove to be too stringent.

Attempts to Expand NEPA Jurisdiction

There have been recent efforts to include the space environment within NEPA juris-

diction, but to no avail. Arguing that Earth’s orbits should be considered as a human

environment, Viasat, DISH, and The Balance Group submitted an Amicus Brief to

the US Court of Appeals in August 2021 regarding the FCC decision to grant license
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amendments for SpaceX Starlink satellites [148].

In the SpaceX Intervenor Brief, published in December 2021, the FCC rejected

the claim that NEPA requires an environmental assessment of the SpaceX Starlink

constellation [149]. Their argument included five main points:

1. Viasat’s claims that reentering SpaceX satellites will pollute the atmosphere

were “insufficient” and “too vague to warrant further consideration” since the

FAA had already concluded SpaceX’s launches had “no significant impact” dur-

ing their own environmental assessment.

2. Risk of human casualty from debris and reentering satellites are “roughly zero”

based on the record.

3. Given the “robust record” on reflective satellites and SpaceX’s existing mitiga-

tion efforts, the FCC determined that an environmental assessment is not nec-

essary, despite Viasat’s and The Balance Group’s opinion that reflected sunlight

on satellites causes “aesthetic, scientific, cultural, social, and health” issues.

4. The FCC has already reviewed SpaceX’s orbital debris mitigation plan and

finds that it is consistent with existing rules and the public interest. While

Viasat claimed that increased collision risk will hamper human development and

exploration in space, as well as causing economic harm, the FCC did not think

the reasons provided enough detailed justification for further environmental

assessment, nor were they convinced that space collisions were even within

scope of NEPA, which applies to human environments.

5. Determining that SpaceX already confirmed compliance, the FCC rejected the

Balance Group’s assertion regarding radiofrequency exposure.

The court ultimately determined that NEPA does not apply to the space environ-

ment. This decision highlights the regulatory gaps that leave atmospheric emissions

74



from space activities largely unregulated. While the FCC determined that an en-

vironmental assessment is unnecessary, other US agencies, such as the Government

Accountability Office, have acknowledged the environmental risks posed by reentry

and atmospheric degradation.

Government Assessment of Environmental Risks

In September 2022, the U.S. Government Accountability Office conducted a techno-

logical assessment of large satellite constellations, evaluating the potential environ-

mental side effects of large satellite constellations [150]. They considered emerging

technology and strategies to mitigate adverse side effects along with their challenges

as well as policies that could address these challenges. Along with orbital debris,

they included emissions in the upper atmosphere as an adverse side effect. Noting

the uncertain impact of atmospheric emissions, they advocated for more attention

and research on the subject in order to guide potential standards, regulations, and

agreements. They deemed that not enough is known about emissions in the upper

atmosphere to design policies for it.

Observation 20: Existing Policy Proposals
Several proposals exist for policy and regulation to address orbital congestion,

but not enough is known about environmental impact to regulate atmospheric

emissions. Earth’s upper atmosphere is not within NEPA jurisdiction, nor

included in the Montreal Protocol.

2.10.3 Policy Mechanisms to Mitigate Orbital Congestion

While there are no existing policy proposals to specifically incentivize OOS in LEO

and not enough is known about the impact of atmospheric emissions to regulate it, it

is possible that orbital congestion policies intended to incentivize ADR and motivate

proper disposal could also create a better business case for OOS. Curbing orbital
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Figure 2.15: GAO Policy Framework [150]

congestion and reducing atmospheric emissions share many of the same goals and

required capabilities, so policies intended to curb orbital congestion could be adapted

for atmospheric pollution reduction.

Policymakers and researchers, intent on establishing policies that will “help, not

hurt” their space industries, are exploring different methods to rectify the growing

tragedy of the commons without hampering the industry’s growth. Policies intended

to incentivize the responsible use of space include orbital use fees, collision charges,

mandatory insurance, rebates, deposit/refunds, and launch fees.

Motivating Question 6
What are existing orbital congestion policies, either proposed or implemented,

that could incentivize OOS in LEO?
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Pigouvian Taxes and Orbital Use Fees

Adilov et al. (2015) propose a two-part Pigouvian tax to entice investment in debris

mitigation, finding that without it, investment in debris mitigation falls short of

the social optimum while the number of launches far exceeds it [151]. The proposal

includes both a launch tax and a tax dependent on the spacecraft operator’s preferred

debris mitigation strategy. They suggest that revenue from the tax could pay for

debris removal but recognize that this tax would be difficult to enact and enforce.

Macauley et al. also make the argument for launch taxes that would amount of 0.2

to 2% of production costs [152].

Orbital use fees (OUF) are another approach to combat orbital congestion. Rao

et al. recommend an optimal orbital use fee of $14,900 per satellite that grows to

$235,000 per satellite by 2040 [153]. They argue that not only would OUFs signifi-

cantly increase the value of the space industry, but they are also necessary to truly

mitigate collisions, since satellite operators do not thoroughly account for the risk of

collision costs they impose on one another.

Roy et al. consider the role of OUF in promoting on-orbit recycling activities

[154]. They assume that the international community would be able to collaborate

on establishing OUFs and focus on the impact that the fee would have on opera-

tor decision making. Speculating that OUFs would encourage operators to properly

dispose of old satellites and a portion of the OUF revenues would finance on-orbit

recycling, Roy et al. expect OUFs to generate demand for ADR and recycling. As

expected, they found that high OUF shortened break-even time. Overall, the results

indicated that profits were more sensitive to space-activity level than OUF policies

[154].

Launch taxes, orbital use fees, and debris disposal fees could all contribute to a

“polluter pays” superfund that is used to subsidize sustainable operations, such as

debris cleanup. In Section 2.10.4, this thesis explores this concept in more detail and

77



highlights examples from other industries.

Deposit/Refund Systems

Another option for enticing responsible use of space resembles Aldi’s shopping cart

strategy. At Aldi’s, you pay a quarter to use the cart and get a quarter back when

you return it. The end result: Aldi’s doesn’t have to corral their carts, and you keep

your quarter. Macauley (2015) proposes a deposit/refund method with an additional

rebate for spacecraft operators who provide a net benefit to the space environment

[152]. Their model incorporates collision probability to provide estimates for the

deposit, refund, and rebate values.

Insurance-Based Mechanisms

Other policy options include mandatory property insurance and absolute third-party

liability insurance in orbit [85]. Currently, some countries only require property and

liability insurance during launch, while on-orbit insurance is voluntary. The Con-

vention on International Liability for Damage Caused by Space Objects, established

in 1972 and still in effect today, requires proving fault in orbit for insurance claims,

which is difficult to do. Consequently, only 5% of current LEO commercial satellites

are insured [85].

Making on-orbit insurance mandatory and liability absolute means operators no

longer have to jump through this hoop to make an insurance claim in the event of

failure. It also creates a business case for on-orbit servicing, where insurers could

outsource servicing contracts and reap salvage benefits, such as useful parts and

materials.

On-orbit insurance provides a promising option to both mitigate congestion and

encourage OOS. In the Aerospace Corporation report “Assurance Through Insurance

And On-orbit Servicing,” Reeseman explains that OOS and on-orbit insurance could
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have a “unique, symbiotic” relationship [155]. OOS could significantly reduce annual

insurance premiums because there would be fewer claims if customers are able to

service failed satellites. For instance, Viasat-3 may file an insurance claim worth

$420 million due to its failed reflector deployment, placing a heavy burden on the

insurer [156]. Additionally, insurance companies could promote standardization by

up-charging satellites that are not service-friendly.

The UK Space Agency has already considered insurance as a tool to promote sus-

tainability. The UKSA consultation report “Orbital Liabilities, Insurance, Charging

and Space Sustainability” (2023) recommended removing or reducing the mandatory

insurance minimum (EUR 60 million) for operators who conduct sustainable mis-

sions and implement practices such as collision avoidance, enhanced trackability, and

reduced dark/quiet sky interference [157].

Alternative Policy Approaches

Another proposal to control orbital congestion of the cap-and-trade concept, where

governments set a maximum number of allowable space objects, determined based

on their space sustainability rating (SSR) and other metrics [158] [159]. Much like

a carbon tax, spacecraft operators could trade orbital allowances and earn credits if

they deorbit satellites or pay for active debris removal. While this method avoids

the risk of undertaxing for very harmful operations in space, it comes with several

challenges. It would be difficult to ensure international compliance and it could enable

inaction in orbital debris cleanup among the largest satellite operators.

Penalties, like the FCC fine for Dish’s failed disposal, are simple and already

demonstrated. Proceeds from these fines could subsidize OOS infrastructure. One

downside of this approach is that if 100% of spacecraft operators follow current con-

tractual agreements for proper disposal via deorbiting, there will be no income for

OOS. One possible adaptation is to impose a fine when spacecraft operators deorbit
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satellites with short life-cycles after a single use. This could further subsidize OOS

while encouraging spacecraft operators to choose service.

Several researchers note that governments could subsidize OOS infrastructure

while customers pay for the marginal cost of servicing [45] [141]. This approach has

been demonstrated before with infrastructure projects such as the Federal Highway

Act of 1956, when the government paid for the national highway system. However,

the government subsidy approach burdens the taxpayer and is highly sensitive to the

political climate and current administration.

Overall, the previous subsections highlight the opportunities for market-based

policy to provide course-correction when the private sector is disinclined to improve

the sustainability of their operations, which leads us to the following observation.

While many of these policy proposals would likely curb congestion in space, they

have drawn criticism from companies like SpaceX.

Observation 22: Market-Based Policy Potential
Market-based policies intended to address orbital congestion, such as orbital use

fees, taxes, rebates, fines, and required insurance, can internalize environmental

costs and motivate private entities to make environmentally-minded decisions.

Ex Ante vs Ex Post Policy Approaches

There are generally two schools of thought when it comes to policies for space debris

management. The first is to adapt institutional frameworks that already exist; the

other is to apply policy only as a means of promoting the Coase theorem. If there is

clarity over property rights, coordinated efforts among operators, and joint research

and development, spacecraft operators could negotiate symbiotic terms, despite the

externalities.

Another important distinction in policymaking is ex ante versus ex post policies.

Ex ante policies make forecasts and anticipate externalities in order to set policy
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values, such as taxes and rebates. Meanwhile, ex post policies respond to events as

they happen. Ex ante policies are challenging to implement due to the complexity

and necessary assumptions involved in developing their forecasting methods.

In September 2023, SpaceX filed a letter with the FCC regarding their position

on an aggregate collision probability metric [160]. Promoting the Coase school of

thought, they point out that information sharing, coordination, good performance,

transparency, and real-time warnings are the most effective means of addressing col-

lision risks and promoting a sustainable LEO environment. Addressing Astroscale

and OneWeb’s proposed aggregate collision probability (ACP) metric, an ex ante

measure, SpaceX makes six key points:

1. There is no universally accepted aggregate collision probability calculation.

2. The ACP metric compounds conservative estimates that ultimately punish

spacecraft operators in LEO.

3. The ACP metric doesn’t address the “true” risks to space sustainability because

it de-emphasizes the GEO regime, where space debris takes far longer to deorbit.

4. The ACP method would harm U.S.-licensed systems, prompting forum shopping

and benefiting foreign operators.

5. The ACP metric would harm American consumers because it would dispropor-

tionately disenfranchise the LEO economy, which is inherently safer than GEO

due to its “self-cleaning” nature.

6. The proposed “safe harbor” could potentially make the problem worse, because

while the responsible, incumbent operators are penalized, the new, less respon-

sible operators get free rein.

SpaceX condemns policy based on ex ante analysis and overly complex method-

ology. Amidst the tense socio-technical space regime, universal policy buy-in is more
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likely when the metrics are transparent and follow the KISS principle (Keep It Simple,

Space-policymaker).

The various policy mechanisms explored in this section share a common economic

foundation: they aim to internalize the environmental externalities that satellite op-

erators currently impose on the space environment without bearing the associated

costs. When private actors make decisions based solely on their individual costs and

benefits and ignore the broader environmental consequences of their actions, a tragedy

of commons emerges. This coordination failure means that individually rational de-

cisions lead to collectively suboptimal outcomes for the space environment and the

long-term viability of space activities.

Policy intervention becomes necessary when market forces alone fail to account for

these environmental costs. However, effective policy design requires careful calibration

to avoid unintended consequences. Well-designed policies should expand economic

opportunities while correcting market failures, rather than simply imposing punitive

measures based on imprecise metrics or arbitrary thresholds. The goal is to align

private incentives with environmental sustainability, creating win-win scenarios where

profitable business decisions also support long-term space environmental health.

Motivating Question 7
How to design policy to control orbital congestion and mitigate atmospheric

degradation without causing unnecessary harm to the industry?

2.10.4 Policy Mechanisms from Analogous Industries

Space is hardly the first industry to suffer from a tragedy of commons. To inform

the space policy conversation and gain a better understanding of what policies could

alter behavior without penalizing the industry, it is worthwhile to explore the policies

and regulations applied to other fields and consider their effectiveness.
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Polluter-Pays Principle

The polluter-pays superfund concept has been gaining increasing attention among

space policy researchers, with many suggesting that it could hold the key for in-

centivizing sustainable operations in orbit [161] [162] [159]. In “Confronting Space

Debris”, Baiocchi and Welser of the RAND Corporation consider 9 issues, ranging

from hazardous waste to email spam, that share characteristics of the orbital debris

problem [161]. They considered three mitigation concepts, command and control,

market-based approaches, and performance-based approaches such as quota-systems.

Based on their compiled research, they concluded that a superfund is a promising

method to remediate orbital debris. They also found that incentivization methods

are effective in the short term, but that in order to arrive at a long-term solution,

stakeholders must change their priorities.

The polluter-pays principle (PPP) is an ancient one, with roots dating back to

Plato and his recommendations for water pollution laws within his Nomoi (Laws)

[163]. Around the same time in the 3rd century BCE, the ancient Indian philospher

Kautiliya defines various financial penalty levels for those who harm the environment,

dependent on their degree of harm, within the Arthasastra (Study of Economics)

[164]. The polluter-pays principle now inspires or forms the basis for a wide range of

international environmental agreements, referenced in the Paris Climate Agreement

and the Helsinki Principle [165]. The major US pollution laws, such as the Clean

Air Act, the Clean Water Act, the Resource Conservation and Recovery Act, and

the Superfund borrow elements of the polluter-pays principle, but do not apply the

principle to the full extent. The Superfund, for instance, which is a fund to address

hazardous waste cleanup, charges polluters based on their ability to pay rather than

the true extent of their damages.

There are a number of other policies that apply the polluter pays principle to some

extent. In 2024, both Vermont and New York State established climate superfund
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programs that require fossil fuel companies to contribute to climate adaptation funds.

Vermont’s Climate Superfund Act, which became law in May 2024, allows the state to

recover financial damages from fossil fuel companies for climate change impacts [166]

[167]. Loosely based on the federal Superfund program (CERCLA), the law requires

companies responsible for more than one billion tons of greenhouse gas emissions

globally to make payments based on their emissions between 1995 and 2024 [168]

[169]. New York followed suit when Governor Kathy Hochul signed similar legislation

in December 2024, requiring large fossil fuel companies to pay for critical climate

protection projects [170] [171]. While other states, such as Maryland, Massachusetts,

and California are working on their own version of the bill, both New York and

Vermont state laws are likely to face legal challenges based on federal preemption and

due process [169]. Consequently, it may be difficult to measure the success of these

programs, but they signal growing interest in superfunds to address environmental

issues.

The Corporate Average Fuel Economy (CAFE) standards operate as a polluter

pays mechanism by regulating vehicle fuel efficiency, with manufacturers historically

required to pay penalties when their vehicles fall short of the standards. These penal-

ties increased from $5.50 to $14 for every 0.1 mpg that new vehicles failed to meet

standards for model years 2019-2021, with the fine calculated by multiplying this rate

by the number of non-compliant vehicles sold [172]. However, in July 2025, Congress

eliminated civil penalties for noncompliance with federal fuel economy standards for

passenger cars and light trucks, though the CAFE statute itself remains on the books

and companies still have reporting obligations [173]. This elimination of penalties has

changed manufacturers’ incentive structures and reduced the value of CAFE compli-

ance credits that electric vehicle manufacturers had previously relied upon as a source

of revenue by selling them to less fuel-efficient manufacturers [173].

The European Union Emissions Trading System applies the polluter pays principle
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by requiring companies to purchase emissions allowances for each tonne of carbon

dioxide they release into the atmosphere [174]. The system operates on a cap-and-

trade principle where companies must monitor and report their annual emissions and

surrender sufficient allowances to cover them, with the ability to trade allowances

among themselves as needed [175]. Recent reforms have accelerated implementation

of the polluter pays principle by phasing out free allowances for the aviation sector,

moving toward full auctioning by 2026 [176]. This market-driven mechanism creates

funding for cleaner alternatives by putting a price on pollution.

There are several challenges in creating a PPP policy, such as ensuring that the

cost polluters pay is commensurate with their damage, which is often difficult to

measure. There’s also the question of how to hold accountable entities whose past

pollution still causes harm today, even though they are actively making efforts to

reform, compared to entities actively worsening the problem, which is illustrated by

current climate change debates. While the PPP concept is simple — if you damage it,

you pay for it — execution at the international scale becomes prohibitively complex. A

more tractable approach is small, national-level subsidy fund where governments tax

their domestic satellite companies to create modest funds that provide just enough

subsidy to make sustainable space operations economically viable. By closing the

business case gap, these smaller-scale programs could drive change with minimal

protests from the private sector and without requiring international coordination. If

successful, these national-scale superfunds could lead by example and prompt other

governments to follow suit. When it comes to building and utilizing a superfund

to subsidize or reward sustainable operations, there is more than one way to peel a

carrot. The following sections describe these various types of implementations.
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Observation 23: The National-Level Subsidy Fund
While not without their challenges, superfund programs, particularly those at

the regional/national level to avoid issues with international compliance, have

proven effective at promoting private sector environmental stewardship through

economic incentives rather than prescriptive regulations.

Feebate System

A feebate system represents a self-contained policy mechanism where a government

taxes an industry to create a fund that subsequently finances incentives for environ-

mentally beneficial actions within that same industry. This circular funding structure

internalizes the costs of pollution while simultaneously subsidizing cleaner alterna-

tives, creating a revenue-neutral approach that encourages industry transformation

without requiring broader taxpayer funding.

The fundamental principle of a feebate system is straightforward: entities en-

gaging in environmentally harmful practices pay fees that directly fund rebates or

subsidies for entities within the same industry that adopt more sustainable prac-

tices. This creates a competitive advantage for cleaner operations while penalizing

polluters, effectively using market mechanisms to drive environmental improvements.

The system is considered revenue-neutral because the fees collected match the rebates

distributed, maintaining fiscal balance while reshaping industry incentives.

Several real-world implementations demonstrate the versatility of feebate systems

across different sectors, both on large and small scales:

• Renewable energy certificates trading: Fossil fuel companies purchase

credits from renewable energy producers, creating a direct financial flow from

polluting energy sources to clean alternatives within the energy sector [177].

• Plastic bag levy systems: Fees imposed on single-use plastic bags fund pro-

grams promoting reusable bags and broader waste reduction initiatives, trans-
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forming consumer behavior through financial incentives derived from the prob-

lematic practice itself [178].

• Carbon pricing with revenue recycling: Several jurisdictions implement

carbon taxes or cap-and-trade systems with explicit revenue recycling provi-

sions. British Columbia’s carbon tax, introduced in 2008, returned all revenue

to residents and businesses through tax cuts, creating a revenue-neutral system

that changed behavior while reducing burden on low-income households [179].

Within 5 years of implementation, the tax reduced fuel use by 16% and emis-

sions are estimated to have reduced by 15% [179]. Economic studies found no

negative financial impact and even some small, positive impact as well as job

growth.

These examples illustrate how feebate systems create closed-loop economic in-

centives that drive environmental improvements without requiring external funding

sources, making them particularly attractive for politically sensitive contexts where

new taxes or government expenditures face resistance.

Sectoral Transformation Fund

A sectoral transformation fund represents a more comprehensive policy mechanism

than a simple feebate system, combining both behavioral incentives and infrastructure

development. Under this approach, a government taxes an industry to create a fund

with a dual purpose: first, to provide direct payments or rebates to entities within

that industry when they adopt environmentally beneficial practices; and second, to

subsidize the development of sustainable infrastructure that enables broader industry

transformation. This dual-pronged strategy addresses both immediate behavioral

change and long-term structural transformation, creating an internalized mechanism

for industry modernization.
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Fuel taxes generate substantial revenue for the Highway Trust Fund (HTF), which

supports highway and transit infrastructure. The HTF, established in 1956, repre-

sents one of the oldest examples of dedicated sectoral funding [180]. While these funds

primarily support infrastructure development, such as roads, bridges, and public tran-

sit systems, rather than direct incentives for fuel-efficient vehicles, they demonstrate

the political durability and fiscal stability of dedicated revenue streams that remain

within the transportation sector.

Sectoral transformation funds combine infrastructure subsidies with some of the

mechanisms of feebate systems. Infrastructure investments create network effects

and economies of scale that amplify the impact of individual behavioral incentives.

For instance, electric vehicle adoption incentives become more effective when paired

with public investment in charging infrastructure. Additionally, subsidized sustain-

able infrastructure addresses the Tragedy of Commons issue and provides a demand

signal to the private sector that the government is committed to transformations in

sector sustainability, providing certainty that encourages private sector planning and

investment in complementary sustainable technologies.

Sectoral transformation funds operate through a circular funding mechanism where

the industry essentially finances its own modernization. Tax revenue collected from

environmentally harmful activities within the sector creates a dedicated fund that

cannot be diverted to general government purposes. This earmarked structure en-

sures that polluters directly subsidize both the transition of their competitors to

cleaner practices and the infrastructure investments that benefit the entire sector.

The revenue neutrality of this approach, where funds stay within the industry rather

than flowing to general taxation, makes it politically more palatable than broader

environmental taxes while still achieving substantial environmental outcomes.

There are several examples that demonstrate the effectiveness of sectoral trans-

formation funds across different industries:
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• Regional Greenhouse Gas Initiative (RGGI): RGGI, with 12 states par-

ticipating in the US, is one of the most comprehensive examples of a sectoral

transformation fund in practice [181]. RGGI states auction carbon dioxide

emission allowances from fossil fuel power plants, generating substantial rev-

enue that is reinvested within the energy sector. Between 2009 and 2017, RGGI

produced a net benefit of $4.7 billion through the cap-and-trade program [181].

These funds are deployed through a dual strategy: direct incentives for energy

efficiency and clean energy adoption by households and businesses, alongside

major infrastructure investments in grid modernization, renewable energy sys-

tems, and charging infrastructure [182]. Saving 7.8 million tons of CO2, the

lifetime benefits of investments made in 2023 alone ($2.7 billion) demonstrate

the model’s effectiveness at driving both individual behavioral change and sys-

temic transformation [182].

• Waste disposal surcharges: Many state and local jurisdictions levy per-ton

fees on waste sent to landfills or incinerators, creating dedicated funds that

support comprehensive waste diversion programs [183]. These surcharges fund

both recycling incentives that reward individuals and businesses for diverting

waste, and the construction and operation of recycling and composting facilities

that enable those sustainable practices. Indiana’s programs awarded over $1.8

million in grants that increased recycled materials by 85,000 tons and created

47 jobs, while Pennsylvania’s Food Recovery Infrastructure Grant provided $9.6

million to projects that rescued nearly one million pounds of food and served

over 25,000 residents [183]. These programs demonstrate how disposal fees

can simultaneously change behavior and build the infrastructure necessary for

system-wide transformation.

• Electronic waste recycling fees: States like California (The Electronic Waste
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Recycling Act) impose fees on purchases of electronic devices, creating funds

dedicated to electronic waste recycling infrastructure and consumer take-back

programs [184]. These fees support both the convenient recycling opportunities

that encourage proper disposal and the specialized facilities required to safely

process electronic waste [185].

These examples illustrate varying degrees of integration between behavioral in-

centives and infrastructure development. RGGI and waste disposal surcharges most

closely embody the sectoral transformation fund concept, combining direct incentives

for sustainable practices with infrastructure investments that enable broader adop-

tion. Together, these cases show that the combined approach of behavioral incentives

and infrastructure subsidies create a more powerful transformation dynamic than

either component alone, accelerating industry change through mutually reinforcing

mechanisms.

The combined approach of behavioral incentives and infrastructure subsidies cre-

ates a more complete cycle of transformation. Initial infrastructure investments re-

duce the cost and increase the convenience of sustainable practices, making behav-

ioral incentives more effective in driving adoption. As adoption increases, economies

of scale further reduce costs, making additional infrastructure investments more eco-

nomically justified. This feedback loop accelerates the pace of industry transforma-

tion beyond what either component could achieve independently, making sectoral

transformation funds particularly well-suited for achieving ambitious environmental

goals within specific industries while maintaining political feasibility through revenue

neutrality and direct industry benefits.

2.10.5 Policy Design for Closing the Business Case Gap

The fundamental challenge for OOS policy design lies in addressing the business case

gap identified earlier: while OOS may generate positive net benefits at the system
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level, individual operators face insufficient private incentives to invest in servicing in-

frastructure or design serviceable satellites. Traditional regulatory approaches, such

as comprehensive environmental frameworks with strict mandates, risk stifling inno-

vation and imposing significant compliance costs on an emerging industry.

A more targeted approach focuses on surgical policy interventions that specifi-

cally address the coordination failure between satellite-operator and service-provider

underlying the OOS business case gap. Rather than broad regulations, carefully cal-

ibrated market-based mechanisms can shift competitive dynamics by making OOS

economically attractive relative to traditional disposal and replacement strategies.

The key insight is that relatively modest policy interventions can tip the balance

when the underlying economics are already close to viability.

Previously, this thesis identifies collection hubs that provide collection-as-a-service

and flexible options as pathways toward de-risking and implementing on-orbit servic-

ing in LEO. Policy can play a crucial role in this goal as well, providing a catalyst

that de-risks infrastructure deployment to improve returns over the long-term horizon

compared to laissez-faire configurations where satellite constellation operators make

deployment decisions with neither stick nor carrot. By designing policy interventions

that interplay with flexible deployment strategies, it becomes possible to motivate

circularity while minimizing the regulatory burden on constellation operators.

The most promising policy designs share a common characteristic: they can be

structured to be approximately revenue-neutral from the satellite-operators’ long-

term perspective while still creating powerful incentives for sustainable behavior. This

approach addresses political feasibility concerns while ensuring that policy interven-

tions genuinely solve coordination problems rather than simply redistributing costs

within the industry.
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Observation 24: Revenue-Neutral Policy and the Sectoral Transformation Fund
Rather than comprehensive environmental regulation, targeted policy mech-

anisms can “close the gap” for the OOS business case. Policy interventions,

such as the sectoral transformation fund concept, can be designed to be ap-

proximately revenue-neutral while still shifting competitive dynamics to favor

OOS, minimizing political resistance and industry burden while addressing the

coordination failure.

Policy Scheme Overview

While numerous policies could influence the OOS market in LEO, this research ex-

amines eight distinct policy approaches that represent different mechanisms for inter-

nalizing environmental costs and addressing the coordination failures identified in the

business case gap. Each scheme targets the common goal of making on-orbit servicing

economically attractive while minimizing regulatory burden and industry disruption.

The eight policy schemes tested in the flexibility framework are:

• Policy Scheme 1: Orbital Use Fee with Refund implements a deposit/refund

system where operators pay annual fees for each satellite but receive full refunds

when satellites are either collected and brought to servicing infrastructure or

refurbished on-orbit. This approach directly incentivizes responsible end-of-life

management and satellite servicing.

• Policy Scheme 2: Orbital Use Fee with Subsidy collects annual fees and

uses the proceeds to subsidize warehouse purchases, infrastructure upgrades,

and refurbishment rebates. This addresses the collective action problem where

individual operators lack incentive to invest in environmentally-oriented infras-

tructure.

• Policy Scheme 3: Contingent Fines with Subsidy operationalizes a “polluter
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pays” framework by fining failed satellites while providing refunds for operators

who collect failed assets. Proceeds subsidize servicing infrastructure and provide

refurbishment rebates, creating direct accountability for satellite failures while

maintaining economic incentives for remediation activities.

• Policy Scheme 4: Mandatory Insurance requires operators to carry on-orbit

insurance for each satellite, but waives premium requirements for satellites that

receive servicing. This leverages existing insurance market mechanisms while

creating direct economic incentives for utilizing available servicing infrastruc-

ture.

• Policy Scheme 5: Progressive Taxation with Subsidy implements time-progressive

taxes on constellation operator profits, with proceeds subsidizing sustainable in-

frastructure. This approach scales obligations with operator success rather than

imposing uniform burdens regardless of financial circumstances.

• Policy Scheme 6: Subsidy/Taxes/Fine combines the progressive taxation ap-

proach (Policy 5) with the contingent fine mechanism (Policy 3), creating a

dual-incentive structure that both penalizes failures and scales contributions to

operator profitability while funding infrastructure and refurbishment rebates.

• Policy Scheme 7: Subsidy/OUF/Fine integrates orbital use fees (Policy 2)

with contingent fines (Policy 3), combining baseline fees on all satellites with

additional penalties for failures. Proceeds fund infrastructure subsidies and

refurbishment rebates, creating layered economic incentives for sustainable op-

erations.

• Policy Scheme 8: Subsidy/OUF with Premium implements a premium-based

orbital use fee structure (similar to mandatory insurance) rather than a flat

annual fee, with proceeds subsidizing infrastructure purchases, upgrades, and
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refurbishment rebates.

The detailed implementation, parameter selection, and modeling methodology

for these schemes are described in Chapter 3. The flexibility framework enables

systematic comparison of these policy approaches against laissez-faire baselines to

evaluate their effectiveness in closing the OOS business case gap.

2.10.6 Research Gaps and Framework Development

The policy landscape analysis reveals three critical research gaps that prevent effective

policy design for incentivizing OOS in LEO. These gaps collectively demonstrate the

need for a systematic framework to evaluate policy interventions and improve their

parameters for maximum effectiveness with minimal industry disruption.

Research Gap 6: Environmental Policy Gaps
No policy proposals exist specifically to limit atmospheric pollution from space

activities or to incentivize OOS in LEO through circular economy approaches.

While orbital congestion policies have received significant attention in the liter-

ature, the specific challenge of incentivizing circular economy approaches in space

through OOS remains unaddressed. Existing congestion policies could potentially be

adapted to address atmospheric emissions concerns, but no research has systemati-

cally explored this connection.

Even if appropriate policies were proposed, policymakers currently lack tools to

evaluate how different interventions would affect the economics of servicing infras-

tructure deployment and operation. This analytical gap means that well-intentioned

policies could inadvertently harm rather than help the development of sustainable

space infrastructure. The complex interplay between policy incentives, infrastruc-

ture investment decisions, and operator behavior requires modeling approaches that

account for uncertainty and flexible deployment strategies.
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Research Gap 7: Policy-Infrastructure Interaction
No flexibility frameworks exist that measure the impact of policy intervention

on infrastructure cost/benefits or investigate how congestion policies could im-

pact demand for OOS in LEO.

The parameter design challenge represents a critical gap for practical policy im-

plementation. Even with appropriate policy mechanisms identified, determining opti-

mal fee levels, rebate structures, and implementation timelines requires quantitative

analysis that balances multiple objectives: closing the business case gap, minimizing

industry burden, maintaining revenue neutrality, and avoiding unintended market

distortions. Without systematic parameter exploration, policies risk being either inef-

fective at incentivizing change or unnecessarily burdensome to industry stakeholders.

Research Gap 8: Policy Parameter Design
No frameworks exist to identify policy parameters (orbital use fee levels, rebate

structures, progressive fee designs, etc) that close the OOS business case gap

in LEO while reducing market and regulatory burden.

These three research gaps collectively point towards a fundamental need for inte-

grated policy design and evaluation frameworks. This need gives rise to the central

research question for policy intervention:

Research Question 4: Policy Design
Which combination and calibration of policy parameters (annual orbital use

fees, collection/servicing rebates, progressive fee structures) most effectively

closes the business case gap for OOS in LEO with minimal impact on overall

industry costs?

This research question addresses all three identified gaps by requiring: (1) develop-

ment of specific policy proposals for OOS incentivization, (2) creation of frameworks
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to measure policy impact on infrastructure economics, and (3) systematic design

space exploration of policy parameters. Answering this question requires a modeling

framework capable of comparing different policy approaches under uncertainty while

accounting for the flexibility inherent in infrastructure deployment decisions. Adapt-

ing the flexibility framework to accommodate the costs and benefits associated with

various policy mechanisms and their parameters provides a test bed for addressing

this question, leading to the third and final hypothesis.

Hypothesis 3
If the flexibility framework models government intervention as parametric, time-

dependent “rewards” and “penalties”, then there exist scenario-dependent re-

ward/penalty schemes that best establish economically feasible OOS infrastruc-

tures that yield better sustainability metrics than laissez-faire OOS infrastruc-

tures developed with the same incremental deployment framework

This hypothesis enables systematic testing of the eight policy schemes introduced

earlier by integrating them into the flexibility framework as parametric interventions

that can be varied and compared. The framework provides a testbed to compare

infrastructures developed laissez-faire, without policy, with those developed under

various policy interventions. By modeling policies as time-dependent parameters

that affect the costs and benefits of different operator decisions, the framework can

identify top-performing policy combinations and calibrations for different scenarios

and system objectives.

The testing of this hypothesis directly addresses the identified research gaps by

creating the first systematic flexibility framework for evaluating OOS-specific policies,

measuring their impact on infrastructure development, and tailoring their parameters

for maximum effectiveness. This approach moves beyond theoretical policy proposals

toward practical policy design tools that can inform real-world decision-making.
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2.11 Thought-Experiment and Real-World Analogies

Collecting old technology that is abandoned in space? Making a business of rehabili-

tating and refurbishing salvage? Science fiction aficionados will recognize that this is

not a new concept, having been perfected by the Tatooine dwellers, Jawas. Letting

nothing go to waste, Jawas create something of a circular economy by collecting old

droids, refurbishing them, and selling them for profit. Tatooine’s desert would be

littered with droid parts if not for these opportunistic environmentalists.

While Jawas provides an entertaining analogy, real-world examples of circular

economy principles offer concrete insights for space operations. The transition from

linear “take-make-dispose” models to circular systems has been successfully demon-

strated across multiple terrestrial industries, each providing valuable lessons for satel-

lite lifecycle management.

Distributed Service Networks Real-life analogs for satellite collection exist in

distributed service networks, such as the Gogoro electric scooter battery swap stations

in Taiwan [186]. The Gogoro scooters are quickly gaining popularity in East Asia

because people can easily swap their dead battery for a charged one at the charging

stations, which are located at convenient locations. The positioning of these charging

stations is analogous to the positioning of the collection hub/spare warehouses in a

parking orbit that drifts through orbital planes. It would be wasteful to throw the

scooter battery out after it loses its first charge, just as single use satellites fail to fulfill

their full value. Charging the scooter battery at home and waiting for it to charge

before you can use it again is inconvenient, just like waiting for a mobile servicer to

reach a satellite at the end of its lifecycle or after a random failure. It is much more

convenient to replace the satellite with a readily available and refurbished spare.
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Figure 2.16: Real World Analogies of Circular Systems: Gogoro Battery Station (left)
[186] and Daisy Robot (right) [187]

Automated Disassembly and Refurbishment Analogies also exist to support

the idea of refurbishing satellites on Earth. Apple’s disassembly robot, called Daisy,

is capable of taking apart 29 different types of iPhones. Processing each iPhone

within 18 seconds, it can process around 1.2 million iPhones each year [187]. While

this is a relatively small percentage of the 150 million iPhones thrown out in 2023,

it marks the first steps towards improved system circularity. In the same vein, if

satellites were brought back to Earth for recycling, satellite operators would have a

reason to develop streamlined refurbishing processes and revisit satellite design to

make them more easily refurbishable, even if it’s a relatively small percentage of the

overall constellation. These developments would then be transferable to orbit in the

future, making a down payment towards improved circularity in space.

Broader Circular Economy Precedents Similar transformation patterns emerge

across other industries. The automotive sector has developed sophisticated re-manufacturing

processes for engines, transmissions, and electronic components, often achieving per-

formance equivalent to new parts at 30% of the original cost [188]. The telecommuni-

cations industry is also working on refurbishing and redeploying cellular infrastructure

equipment, extending operational lifespans through component upgrades and repairs.

Engineers are Ericsson have determined that refurbishment reduces supply-chain re-
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lated carbon emissions by >90% compared to manufacturing a new product [189]. In

the US, researchers and policymakers are working on better ways to streamline and

incentivize battery recycling [190]. While there are several challenges in recycling and

reusing batteries, recovered and reintegrated battery materials would reduce both re-

source extraction and waste streams.

These terrestrial examples share common characteristics that make them relevant

to space operations: high-value assets with modular designs, established reverse lo-

gistics networks, standardized refurbishment processes, and economic incentives that

make circular approaches competitive with linear alternatives. Each industry’s evo-

lution toward circularity was driven by a combination of resource scarcity, regulatory

pressure, and economic opportunity—factors increasingly present in the space do-

main.

2.12 Overarching Research Framework

Overarching Observation
The process of motivating and establishing circular space economies in LEO is

a complex system of systems problem that requires analysis from the techni-

cal, financial, and policy perspectives. This thesis aims to provide a systems-

level screening framework that evaluates the interaction between novel OOS

CONOPs, flexible options, and various policy schemes in order to path-find

strategies and infrastructures that could improve the case for OOS in LEO.

The overall thesis objective is to identify opportunities that sufficiently incen-

tivize the private sector to improve sustainability (via circularity) in LEO and reduce

atmospheric emissions associated with the operations and maintenance of constella-

tions composed of single-use satellites. This chapter has provided an exploration of

CONOPs, policy, and business strategies that could improve the case for OSAM in

LEO, taking into account the numerous sources of uncertainty. Flexibility frame-
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works that include novel and state-of-the-art OSAM CONOPs will provide a means

of investigating options that improve the LEO OSAM business case. The overarching

research question is as follows:

Overarching Research Question
Which flexible option, or set of options, consistently improves the economic

value and environmental impact of LEO-based OOS over a range of potential

policies and future scenarios sampled from multi-domain uncertainty?

By applying the impact of policy parameters to the cost and benefits of mega-

constellation operators and OOS providers, the framework provides a computational

laboratory for investigating different policies and their impact on demand for OOS,

which will provide a better understanding of how policy could influence the state of the

circular space economy. This thesis posits that novel OOS concepts, combined with

flexible strategies and policies, will enable economically feasible OOS infrastructures.

Overarching Hypothesis
If a flexibility framework for LEO-based OOS incorporates multiple uncertain

variables, policy impact, novel design concepts like collection hubs, and allows

for multiple combinatorial options, then there will exist an option or set of

options that provides a viable and sustainable private infrastructure for circular

space economy.

To substantiate this overarching hypothesis, there needs to be an assessment

methodology that allows the user to screen the value of flexible options over a wide

variety of scenarios. This leads us to the Overall Framework Gap:
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Overall Framework Gap
No existing flexibility framework for LEO-based OOS includes multi-domain

uncertainty, multi-agent decision making, and the combinatorial effects of both

classic OOS options and novel concepts (cooperative maneuvering, collection

hubs, temporary abandonment) that would allow screening for economically

and environmentally feasible strategies and policies.

This chapter contains an evaluation of the research gaps and presents the hypoth-

esis. The following chapter presents the specific methodology and framework details

in order to substantiate the presented hypotheses.

Hypothesis 1: CAAS Hypothesis 2: Flexibility Hypothesis 3: Policy

No existing flexibility framework for LEO-based OOS that includes multi-domain uncertainty, interactive decision modeling, impact of 
policy, and the combinatorial effects of both classic OOS options and novel concepts (cooperative maneuvering, collection hubs, 

temporary abandonment) that would allow screening for economically and environmentally feasible strategies and policies.

Overall Framework Gap

Supporting Condition: CAAS 
outperforms both overpopulation and 

multi-echelon sparing baseline in 
terms of emissions for comparable or 

better cost

Supporting Condition: Framework 
identifies which flexible enablers and 

strategies consistently outperform the 
baseline 

Supporting Condition: The framework 
identifies a policy scheme that 
improves sustainability metrics 

compared to laissez-faire 
configurations

Experimental Requirement 2: 
Requires flexibility framework 

that compares baseline, 
inflexible designs with designs 

that enable flexibility

Experimental Requirement 3: 
Requires modeling cost/benefits of 

various policy schemes and 
incorporating their effect on 

owner/operator decision-making

Experimental Requirement 1: Requires 
model that provides rank-order comparison 

between configurations in terms of cost 
and emissions and includes the impact of 

multiple sources of uncertainty 

Requires mid-fidelity model with uncertainty 
characterization

Requires decision-making model that reacts to several 
sources of uncertainty and evolving infrastructure

Figure 2.17: Framework Gap for Experimentation Conditions
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CHAPTER 3

METHODOLOGY

The methodology developed in this chapter draws from analogous applications and

infrastructure projects while addressing the unique constraints of space operations in

LEO. The following sections provide details on the specific CAAS CONOPs, iden-

tify necessary simulation properties, identify and characterize sources of uncertainty,

develop the flexibility framework, model the effect of various policy options, and

provide a methodology for path-finding options and strategies that could enable the

space industry to improve their space junk allocation and waste abatement (Space

JAWA).

3.1 CONOPs Summary

The Collection-as-a-Service (CAAS) CONOPs represents an advanced multi-echelon

sparing strategy designed for mega-constellations in Low Earth Orbit (LEO). This

framework extends traditional satellite constellation management by incorporating

Active Debris Removal (ADR) vehicles, orbital collection hubs, and cooperative ma-

neuvering to create a flexible, sustainable infrastructure for satellite operations. The

CAAS CONOPs builds upon previously proposed multi-echelon sparing, which fea-

tures warehouses of spare satellites located in parking orbits that incrementally resup-

ply in-plane spare satellites that are capable of replacing failed satellites in a timely

manner. In some cases, multi-echelon sparing may offer cost benefits compared to

other sparing strategies, like overpopulation or direct resupply. Figure 3.1 below pro-

vides a comparison of these 4 CONOPs. The Collection-As-A-Service CONOPs is

summarized as follows:
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CAAS CONOPS Overview

System Description: The Collection-as-a-Service (CAAS) framework is an

advanced multi-echelon sparing strategy that integrates orbital spare ware-

houses and Active Debris Removal (ADR) vehicles to provide comprehensive

satellite collection, processing, and replacement services for mega-constellations

in Low Earth Orbit (LEO).

Key Operational Constraints & Assumptions:

• Orbital Configuration: All warehouses and constellation satellites op-

erate at the same inclination. Warehouses are positioned in lower parking

orbits where J2 perturbation effects cause natural drift between orbital

planes—no propulsive plane changes are used.

• Economic Model: The analysis assumes a single entity operates both

the constellation and the CAAS infrastructure (warehouses and ADR

vehicles), enabling integrated decision-making for optimal system-wide

economics.

• Failure Collection Response: Warehouse-based ADR deployment de-

pends on urgency of the failure type and several conditions. If satel-

lite failure requires immediate replacement, Warehouse-based ADR de-

ployment occurs only if a warehouse is already in close proximity and

can reach the failed satellite within the same timeframe as a ground-

launched vehicle. If satellite failure does not require immediate replace-

ment, Warehouse-based ADR deployment occurs if a warehouse is within

five years of reaching the failed satellite. Otherwise, an ADR vehicle is

launched from Earth.

• Spare Satellite Inventory: Two in-plane spare satellites are maintained
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per orbital plane across all CONOPS for immediate failure response.

• Reusable Launch Vehicle Operations: Reusable second stages return

to Earth after delivering satellites to orbital planes. These stages can

opportunistically rendezvous with nearby warehouses to collect satellites

for Earth return only if the timing and trajectory permit – no propulsive

plane changes. Rockets are never launched empty (“deadheading”) solely

to retrieve satellites.

• Satellite Maneuvering Capabilities: If upgraded to do so, opera-

tional satellites can maneuver close to warehouses, where ADR vehicles

complete final docking and collection. Full autonomous rendezvous and

proximity operations with docking (RPOD) capabilities are assumed cost-

prohibitive for constellation satellites.

Core Operational Principle: CAAS leverages natural orbital mechanics

(J2 drift) and opportunistic operations to minimize propulsive maneuvering

costs while maintaining constellation coverage through flexible, multi-pathway

satellite collection and processing options.

Baseline Strategy Comparison
Two Baseline Strategies Compared to CAAS:

1. 0-Warehouse Baseline (Overpopulation):

• Architecture: Two in-plane spare satellites per orbital plane

• Spare Replenishment: Direct launch from Earth to orbital plane

when spare is used

• Failed Satellite Collection: ADR vehicle launched from Earth for
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every failure

• Key Characteristic: Simplest architecture with no orbital infrastruc-

ture; relies entirely on ground-based launch responsiveness

2. Multi-Echelon Sparing (No CAAS Features):

• Architecture: Two in-plane spare satellites per orbital plane + park-

ing orbit warehouses storing additional spares

• Spare Replenishment: When in-plane spare replaces failed satellite,

warehouse drifts via J2 to replenish in-plane spare inventory

• Failed Satellite Collection: ADR vehicle launched from Earth for

every failure

• Key Characteristic: Reduces launch frequency for spare replenish-

ment through orbital warehouses, but does not integrate ADR with

warehouse operations or enable flexible collection timing

Critical Distinction: The multi-echelon baseline provides only the

warehouse-based spare replenishment benefit without CAAS operational in-

novations.

3.1.1 Core Infrastructure Components

The CAAS system operates through a network of orbital spare warehouses posi-

tioned in lower parking orbits that gradually drift between orbital planes via J2

perturbation effects. These collection hubs serve multiple functions as both spare

satellite storage facilities and processing centers for collected end-of-life spacecraft.

The warehouses can be incrementally upgraded with enhanced capabilities includ-
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Earth

Direct Resupply

No spare

warehouses

Active Satellites

No in-plane spares

Ground spares
Replace failed satellites

(a) Direct Resupply Sparing Strategy

In-plane spares
Ready to replace failed satellites

Earth

Over-population 
Sparing Strategy

No spare

warehouses

Active Satellites

Ground spares
Replace failed satellites if 

there are no in-plane spares

(b) Overpopulation Sparing Strategy

In-plane spares
Ready to replace failed satellites

Earth

Multi-Echelon
Sparing Strategy

Active Satellites

Ground spares
Replace failed satellites if 

there are no in-plane spares

Spare 
warehouse

Resupply
In-plane
spares 

(c) Multi-Echelon Sparing Strategy

In-plane spares
Ready to replace failed satellites

Earth

Multi-Echelon
Sparing Strategy
With CAAS

Active Satellites

Ground spares
Replace failed satellites if 

there are no in-plane spares

Spare 
warehouse

Resupply
In-plane
spares 

ADR Vehicle
collects failed sat and brings 

it to the spare warehouse

(d) CAAS Strategy

Figure 3.1: Comparison of sparing strategies for satellite resupply.

ing fuel depots, robotic servicing equipment, and spare parts inventory to provide

on-orbit refueling and repair services, as shown in Figure 3.2.

Active Debris Removal vehicles form the operational backbone of the collection

service, functioning as specialized spacecraft capable of rendezvous, capture, and

transport operations. These ADR vehicles operate with significant deployment flexi-

bility as they can be launched directly from Earth for immediate collection missions

or deployed from orbital warehouses if a failed satellite is nearby. After completing a

mission, they have the option to rendezvous with a passing warehouse to deposit its

collection of satellites, resupply on fuel, and prepare for the next collection mission.
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Collection Hub CONOPs

…

…

Upgrade Option:

Launch collection hub 
full of spares

In-Plane spares replenish 
constellation when satellites fail

Customer also has the 
option to de-orbit the 
satellite (and incur a 

penalty in some cases)

In-Plane 
Spare 
Sat

Launch collection hub 
upgrades

Service collected satellites

Parking Orbit

Customer Orbit
Sat fails

Earth

ADR vehicle collects old 
satellites and rendezvous 

with collection hub

Parking spares replenish 
the supply of in-plane 
spares when the 
warehouse drifts into 
plane

Figure 3.2: CAAS Upgrade Option

These options are compared in Figures Figure 3.3 and Figure 3.4.

3.1.2 Operational Framework

The CAAS CONOPs addresses fundamental satellite constellation operator needs by

maintaining consistent coverage while reducing operational costs. When satellites ex-

perience failures or reach their intended end-of-life, operators have multiple response

options within the framework. The system maintains in-plane spare satellites for im-

mediate replacement of failed assets (2 in-plane spares for all CONOPs), while orbital

warehouses provide a secondary tier of spare inventory that drift through planes using

natural orbital mechanics.

For end-of-life satellite management, the CAAS framework requires constellation

operators to utilize ADR services for all failed satellites to reduce collision risk and

maintain regulatory compliance for replacement authorizations. However, the timing

and urgency of collection operations varies significantly based on operational circum-

stances. Some satellite failures leave the satellite completely inoperable and unable to
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Parking Orbit

Customer Orbit

In-Plane spares replenish 
constellation when satellites fail

ADR vehicle collects old 
satellites and rendezvous 

with collection hub

Parking spares replenish 
the supply of in-plane 
spares when the 
warehouse drifts into 
plane

Active 
Satellites

In-Plane 
Spare 
Sat

Sat fails

ADR vehicle is launched 
directly from Earth

ADR vehicle returns to the next 
warehouse that passes into plane, 
delivering the failed satellite

Earth

Direct ADR Launch Option:

Figure 3.3: ADR Launched from Earth

maneuver itself, necessitating immediate ADR collection since the satellite may pose

a collusion threat to its replacement. In contrast, other failures can be immediately

replaced using available in-plane spares, allowing the failed satellites to remain in

orbit temporarily until ADR vehicles can collect them during scheduled operations.

Since the FCC requirement is to dispose of satellites within 5 years of their EOL, the

framework allows five years for an ADR vehicle to drift into the vicinity of the failed

satellite and collect it. This flexible timing approach ensures continuous service while

optimizing collection efficiency.

The CAAS system maximizes operational efficiency through opportunistic ren-

dezvous operations when vehicles pass near orbital warehouses, illustrated in Fig-

ure 3.5. If reusable rocket stages that have delivered new satellites to an orbital

plane can rendezvous with nearby warehouses during their return trajectory to collect

satellites designated for Earth return, they reduce the need for dedicated collection

missions. Similarly, ADR vehicles launched directly from Earth to collect specific
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Parking Orbit ADR Option:

In-Plane spares replenish 
constellation when satellites fail

In-Plane 
Spare 
Sat

Sat fails

ADR vehicle undocks from 
the warehouse once it

passes into the plane of
the failed satellite

ADR vehicle returns to the next 
warehouse that passes into plane, 
delivering the failed satellite

Earth

Parking spares replenish 
the supply of in-plane 
spares when the 
warehouse drifts into 
plane

ADR vehicle collects old 
satellites and rendezvous 

with collection hub

Parking Orbit

Customer Orbit

Figure 3.4: ADR Deployed from Parking Orbit

failed satellites can rendezvous with warehouses along their return path if proximity

allows. These ADR vehicles can deposit their collected satellites at the warehouse

for processing and subsequently join the orbital fleet to conduct additional collection

missions, incrementally expanding the warehouse’s ADR capacity without requiring

separate deployment launches.

3.1.3 Collection and Processing Options

Once satellites are collected by ADR vehicles, the CAAS system provides multiple

pathways for processing based on satellite condition, technological obsolescence, and

warehouse capabilities. Collection hubs can accommodate various satellite states and

offer different processing options depending on available infrastructure and economic

considerations.

Collecting satellites via ADR vehicles is not the only method for wrangling satel-

lites within the framework. Satellites also have the option of being upgraded so that
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Plane Resupply with Rendezvous Option:

Reusable second stage 
delivers collection of old 
satellites

Warehouse has 
room for more 
satellites

Second stage 
collects old 

satellites

…

Earth

Launch new plane of 
satellites

Second stage 
replenishes the plane

Retired satellites deorbit or 
RPO with warehouse

If a warehouse will pass into plane within a reasonable amount of time, 
the second stage will rendezvous with the warehouse for collection

Parking Orbit

Customer Orbit

Figure 3.5: Plane Resupply with Rendezvous Option

they are capable of rendezvous proximity operations to the warehouses, an option

that is depicted in Figure 3.5. Once in range, ADR vehicles can collect the satellites

and conduct last-mile maneuvering and docking. Upgrading satellites for full RPOD

capabilities is assumed to be inhibitively expensive given their price point. RPO,

meanwhile, is not a large jump from their existing deorbiting capabilities. Allowing

satellites the chance to deliver themselves allows ADR vehicles to focus on collected

failed satellites that are unable to maneuver themselves.

Satellites that remain technologically current and require only minor repairs can be

directly serviced at warehouses upgraded to provide repair and refuel services. These

spacecraft can be refueled, repaired, and immediately recommissioned as operational

spare satellites without leaving the orbital environment, maximizing efficiency and

minimizing costs.

For satellites requiring more extensive refurbishment beyond the warehouse’s on-

orbit capabilities, the system can return them to Earth for comprehensive overhaul

and technological upgrades, depicted in Figure 3.6. Once refurbished terrestrially,
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these satellites can be relaunched and reintegrated into the constellation or spare

inventory. All satellite-return missions utilize resupply launches — either delivering

new satellites to nearby orbital planes or restocking the warehouse. Rockets are never

launched empty solely to retrieve satellites and return them to Earth, a practice known

in terrestrial logistics as “deadheading.”

Earth Return Option:

Launch collection hub 
full of spares

In-Plane spares replenish 
constellation when satellites fail

In-Plane 
Spare 
Sat

Sat fails

Reusable second stage 
delivers collection of old 
satellites

Second stage delivers new 
satellites

Second stage 
collects old 

satellites

Customer also has the 
option to de-orbit the 
satellite (and incur a 

penalty in some cases)

…

ADR vehicle collects old 
satellites and rendezvous 

with collection hub

Parking spares replenish 
the supply of in-plane 
spares when the 
warehouse drifts into 
plane

Earth

Parking Orbit

Customer Orbit

Figure 3.6: Refurbishment on Earth Option

Satellites that have become technologically obsolete or are beyond economical

repair have several disposal pathways available. They can be deorbited or returned

to Earth for component recovery and material recycling. The choice among these

options depends on satellite condition and available infrastructure capabilities.

3.1.4 Flexibility and Adaptability

The CAAS CONOPs incorporates significant flexibility mechanisms to adapt to un-

certain future scenarios including varying failure rates, technological obsolescence

patterns, and market conditions. The modular nature of the infrastructure allows for

incremental expansion or modification based on operational experience and changing
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requirements.

The framework addresses the challenge of technology obsolescence by enabling

scheduled replacement of orbital spares before they become outdated, treating obso-

lete spares as candidates for collection and processing. This approach ensures that

the spare inventory remains technologically current while providing additional oppor-

tunities for satellite reuse and recycling.

Service pricing within the CAAS framework adapts dynamically based on satellite

condition, remaining useful life, and the net present value of different processing

options. This flexible pricing structure incentivizes operators to utilize collection

services while ensuring economic viability for service providers.

3.1.5 Novel CONOPs

The CAAS CONOPs represents a comprehensive approach to sustainable satellite

constellation management that balances operational requirements with environmental

responsibility through flexible infrastructure and adaptive operational procedures.

Elements of the novel CAAS CONOPs can be summarized as follows:

• Integration of Active Debris Removal with Multi-Echelon Sparing:

Combines orbital spare warehouses with ADR vehicles to create a comprehensive

collection and servicing infrastructure for satellite constellation management.

• Flexible ADR Vehicle Deployment Strategy: Enables ADR vehicles to

be deployed through multiple pathways including direct Earth launch for im-

mediate missions, warehouse-based regional operations, or incremental fleet ex-

pansion through resupply missions.

• Opportunistic Rendezvous Operations: Maximizes operational efficiency

by leveraging existing orbital traffic, allowing rocket stages delivering new satel-
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lites to collect warehouse inventory on return trajectories and enabling Earth-

launched ADR vehicles to join orbital fleets after completing collection missions.

• Variable Collection Timing Framework: Addresses operational urgency by

requiring immediate ADR collection when necessary or immediate spare delivery

when no in-plane spares are available – all while allowing flexible scheduling for

in-plane spare replacement or satellite collection when time permits.

• Multi-Pathway Satellite Processing: Provides comprehensive end-of-life

options including direct warehouse servicing and recommissioning, Earth return

for refurbishment, controlled deorbiting, and terrestrial abandonment based on

economic and technical considerations.

• Incremental Infrastructure Expansion: Enables organic growth of ADR

fleet capacity through mission-based additions rather than requiring dedicated

deployment launches, reducing infrastructure development costs.

• Mandatory Collection with Operational Flexibility: Requires ADR ser-

vices for all failed satellites to ensure compliance and collision risk reduction

while maintaining operational flexibility through variable timing and process-

ing options.

• Technology Obsolescence Integration: Incorporates scheduled replacement

of orbital spares before technological obsolescence occurs to avoid loss of rev-

enue.

• Dynamic Service Value Model: Implements adaptive servicing value based

on satellite condition, time to obsolescence, and net present value of processing

options to incentivize collection while ensuring economic viability.

• Warehouse Capability Scalability: Enables incremental warehouse upgrades
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to expand from basic storage + ADR refueling to full on-orbit servicing capa-

bilities for servicing satellites.

3.2 Problem Properties and Framework Requirements

The complex, multi-domain nature of establishing circular space economies in LEO

necessitates a systems-level approach that can simultaneously address technical per-

formance, economic viability, and policy effectiveness across highly uncertain future

scenarios. To answer the research question of which combination of CONOPs, flexible

options, and policies consistently provide viable economic value and environmental

impact of LEO-based OOS, this thesis develops a comprehensive flexibility framework

that explicitly addresses the identified research gap. The methodological approach is

designed to overcome the limitations of existing frameworks that fail to capture the

combinatorial effects of multi-domain uncertainty, cross-fleet decision making, and

the integration of CAAS.

The methodology presented here employs a three-pronged approach to properly

represent the multidisciplinary nature of the research problem. First, a technical

modeling component captures the operational performance of CAAS architectures

and cooperative maneuvering strategies through discrete event simulation. Second, a

financial analysis component evaluates economic viability using flexible option valua-

tion methods that explicitly account for the flexibility value of various OOS strategies

under uncertainty. Third, a policy modeling component incorporates the decision-

making behavior of constellation operators to assess how different policy schemes

influence adoption and implementation decisions.

The integration of these three components within a unified flexibility framework

enables systematic screening of strategy combinations across the full range of plausible

future scenarios. This approach is essential because the value proposition for LEO-

based OOS emerges from the interaction between technical performance, economic
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incentives, and policy environments, none of which can be meaningfully evaluated in

isolation given the deep uncertainties that characterize the evolving space economy.

To establish an appropriate flexibility screening framework, we must first identify

the key characteristics and properties of this problem. The framework formulation

has several defining characteristics that drive the methodological choices, particularly

the need for mid-fidelity methods suitable for screening designs and strategies:

1. Uncertainty is multi-variate and multi-type (both endogenous and exogenous)

2. Demand for OOS is based on several sources of uncertainty

3. The model will focus on the perspective of the satellite constellation opera-

tor, hereby referred to as the customer, assuming that the customer owns and

operates the warehouses and ADR vehicles

4. Formulation should be linear and parallelizable to spare computational cost

5. Orbits are circular and maneuvers are restricted to in-plane only

6. Uncertain variables follow a pre-determined path, initialized within each Monte

Carlo simulation, and is independent of decision-making

7. Decisions for the future depend on decisions that have been made in the past

3.3 Formulation Question 1: Framework Selection

Formulation Question 1
What type of flexibility framework will accommodate these properties?

In their chapter dedicated to reviewing flexibility framework literature, Cardin et

al. generalize flexibility framework phases into 5 categories: baseline design, uncer-

tainty recognition, concept generation, design space exploration, and process man-

agement [6]. As the name implies, the baseline design step determines the best design
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Figure 3.7: Flexibility Framework Phases [6]

using traditional methods. In order to determine flexibility value in an infrastruc-

ture, the value of the flexible system must be compared to that of an inflexible and

traditionally-designed system. The baseline design in this thesis, described further in

section 3.3.1, draws inspiration from Jakob et al.’s multi-echelon sparing strategy. The

uncertainty recognition phase determines which random variables should be included

in the framework and how to characterize them. Section 3.3.2 provides details on the

uncertain sources included within the framework. The concept generation phase de-

cides which design elements should be included in the framework, determining which

flexible options are likely to be the best candidates. The previous chapter provided

justification for the proposed CAAS concept. Going into more detail, section 3.3.3

explores how this novel concept, along with other OOS CONOPs, are down-selected
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and incorporated within the flexibility framework. The fourth phase, design space

exploration, compares the results of the flexible designs with the baseline to determine

the value of flexibility. The final phase, process management, includes consideration

for the interaction of different agencies, which is out of scope for this thesis.

3.3.1 Formulation Question 1.1: Baseline Establishment

Formulation Question 1.1
How to establish the baseline?

The baseline design draws inspiration from Jakob et al.’s proposed multi-echelon

sparing strategy and uses OneWeb for its use case. The experimentation introduces

CAAS to the CONOPs and determine its comparative performance to a baseline

configuration that utilizes overpopulation and launches ADR missions exclusively

from Earth. To establish the baseline for purposes of measuring the value of flexibility,

the baseline initializes all infrastructure elements and decisions from the beginning of

the 30-year scenarios.

The top performing configuration parameters for the baseline design, such as the

number of warehouses, their capabilities, and the refuel/repair/RPO capabilities of

the satellites, are determined using the same Discrete Event Simulation and Monte

Carlo method that is used within the flexibility framework, but excludes flexible

options. Further details on this simulation tool are provided in section 3.4.

Parameters of the OneWeb use case are provided below in Table 3.1. While future

work should consider variations to parking orbit altitude and warehouse capacity, this

thesis borrows the optimal values from Jakob et al. in order to maintain a reasonable

design space and focus on illustrating the value of CAAS and flexibility.
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Table 3.1: Use Case Simulation Parameters

Variable Name Range
number of planes 18
satellites per plane 36
customer altitude 1200km
parking orbit altitude 796km
inclination 86.4 degrees
number of in-plane spares 2 satellites
satellite base cost $900,000 [191]
satellite dry mass 150 kg[192]
satellite fuel mass 12 kg
dry mass ADR 150 kg [80]
fuel mass ADR 150 kg
ISP ADR 230 s
warehouse max capacity 35 satellites
warehouse initial capacity 5 spare satellites
warehouse fuel mass 500 kg
warehouse dry mass 1000 kg
Xenon cost $5000/kg [193]
Green monopropellant cost $100/kg [194] [195]
discount rate 0.03
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Table 3.2: Sources of Uncertainty and Modeling Parameters

Uncertain Quantity Model/Method Initial Value(s) Uncertainty Parame-

ters

Eq.

Constellation Revenue Geometric Random Walk

/ Log-normal PDF

$1.4B/year [196] α = 0.059 [197], σ = 0.15 Equation 3.1

Launch Cost Log-normal PDF with

volatility cone

αm based off present launch

cost per kg and Citi Bear

Case [198]

σ = 0.1 before 2040, σ =

0.35 and αm = 0 after

2040

Equation 3.1

Launch Delay Processing + Exponential Tprocessing = 3 months,

µlaunch = 2 months

Exponential with µlaunch Equation 3.2

ADR Launch Delay Learning Curve + Expo-

nential

mintime = 0.5 years,

initialextraTime = 1.5 years,

λ = 0.2303

Exponential with µlaunch Equation 3.3

Satellite Manufacturing

Cost

Log-normal PDF $900,000 [191] αm = −0.075 [199], σm =

0.1

Equation 3.1

ADR Vehicle Cost Learning Curve + Time-

based decay

$48M (initial) [101] λ ∼ U(0.1, 0.5), Pmin ∼

U(0.5, 0.8) × costi, r =

0.03

Equation 3.4

ADR Collection Success Learning Curve (Power

Law)

S0 ∼ U(0.7, 0.99) λ ∼ U(0.05, 0.25) Equation 3.6

Continued on next page
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Table 3.2 – continued from previous page

Uncertain Quantity Model/Method Initial Value(s) Uncertainty Parame-

ters

Eq.

Space-Based Services

(ADR Operation, Re-

fuel, Repair, Obsolete

Repair

Log-normal PDF $250k / $250k / $562.5k /

$687.5k

α = −0.0375, σ = 0.1

(services ∝ same path)

Equation 3.1

Warehouse Cost Learning Curve $100M (initial) λ ∼ U(0.1, 0.5), Pmin ∼

U(0.5, 0.8)×costi, Nmax =

54

Equation 3.7

Warehouse Maintenance

Cost

Lognormal PDF (cost) Every 15 years: $5M median

repair cost

Cost: µ = ln(5 ×106), σ =

1.0

Equation 3.8

Earth-Based Services (Re-

pair, Refurbish, Ob- solete

Repair

Log-normal PDF $450k / $200k / $550k

(repairable); $855k (non-

repairable)

α = −0.075, σ = 0.1 (ser-

vices ∝ same path)

Equation 3.1

Warehouse Upgrades (Re-

fuel, Repair Capability)

Log-normal PDF $8M / $15M α = −0.0375, σ = 0.1

(capabilities ∝ to space-

based services path)

Equation 3.1

Continued on next page
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Table 3.2 – continued from previous page

Uncertain Quantity Model/Method Initial Value(s) Uncertainty Parame-

ters

Eq.

Satellite Upgrade R&D

(Refuelable, Repairable)

Log-normal PDF $5M / $9M R&D + 6% / 10%

cost increase

α = −0.0375, σ = 0.1

on R&D (capabilities ∝ to

space-based services path)

Equation 3.1

Technology Obsolescence Weibull Utility Function N/A k = 2, λ = 1, β = 2 Equation 3.9

Failure Time Exponential (from

MTBF) and Failure

Change Rate, Uniform

MTBF starting with 1 fail-

ure/year, includes exponen-

tial change rate with random

parameter from uniform dis-

tribution

MTBF Derived from fleet

size, exponential failure

change rate varies uni-

formly between 0.005 and

0.08

Equation 3.10,

Equation 3.11, and

Equation 3.12

Failure Type Bernoulli Trial 50% inoperable None (uniform draw) —

Collision Event Cost Exponential + Uniform +

Cascade Probability

$10k base β = 0.01, Pcascade =

min(0.02T, 0.5)

Equation 3.13
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3.3.2 Formulation Question 1.2: Uncertainty Variable Selection and Characterization

Formulation Question 1.2
How to identify and characterize sources of uncertainty?

There are a number of uncertain variables involved in a space mission. This

list includes, but is not limited to: launch cost, spacecraft cost, schedule delays,

random failures, change in demand, industry growth, technology obsolescence, tech-

nology readiness, and learning curves [134] [142] [3]. This framework focuses on

mega-constellation revenue, technology obsolescence, launch cost, random failures,

and the hybrid uncertainty arising from interactions between servicing capability and

satellite capability. Table 3.2 summarizes sources of uncertainty and their characteri-

zation while Table 3.3 contains the uncertain variables that were randomized using a

DOE. This section provides a deep dive into the details of each source of uncertainty

and its characterization.

Table 3.3: Latin Hypercube DOE Parameters for Uncertain Variables

Parameter Min Max

Earth-based repair operation cost streamlining cost multiplier 0.5 1

Earth-based refuel operation streamlining cost multiplier 0.5 1

Technology obsolescence intensity parameter 1 5

Time to technology obsolescence onset (years) 5 15

Active Debris Removal (ADR) initial success rate 0.7 0.99

ADR success rate learning curve exponent 0.05 0.25

Warehouse cost learning curve exponent 0.1 0.5

Warehouse cost minimum cost fraction 0.5 0.8

ADR cost learning curve exponent 0.1 0.5

ADR minimum cost fraction 0.5 0.8

Satellite cost multiplier for RPO-capability upgrade 1 1.5

122



Parameter Min Max

Satellite cost multiplier for repair upgrade 1 1.3

Satellite cost multiplier for refuel upgrade 1 1.2

Satellite return to Earth cost (multiplier of present launch cost) 0.2 0.99

Simulation year that returning satellites to Earth becomes possible 7 15

Satellite failure rate change rate (per year) 0.005 0.079

Percentage of launch vehicles with reusable 2nd stages 20% 70%

Reusable 2nd stage fleet percent multiplier if Earth-return available 1× 1.25×

Geometric Random Walk for Revenue Modeling

Revenue uncertainty and random failure modeling are commonly included in related

flexibility frameworks [10] [20]. The dramatic reduction in launch costs has fundamen-

tally transformed the commercial space industry over recent decades, making contin-

ued launch cost uncertainty a critical consideration. While current mega-constellation

operators plan continued expansion, their growth trajectories remain uncertain and

are directly tied to customer revenues and profit margins.

The geometric random walk method provides a robust foundation for model-

ing revenue uncertainty and has been extensively used in previous on-orbit servic-

ing (OOS) flexibility frameworks [10, 141, 142]. This approach yields the following

log-normal probability density function:

p(m)
τ (x) = 1√

2π

1
σm

√
τ

1
x

exp
{

−(ln(x) − (αm − σ2
m/2) τ)2

2σ2
mτ

}
(3.1)

In this formulation, αm represents the drift (1/time), σm denotes volatility (1/
√

time),

and τ represents time. The drift parameter, αm, captures the time value of money

[10]. This geometric random walk model is applied to various sources of uncertainty

throughout the framework, providing a consistent stochastic foundation for financial
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modeling.

Launch Cost and Delay Uncertainty

Launch cost scenarios utilize log-normal models incorporating volatility cones based

on 2020 Citi Research projections [198]. By 2040, Citi Research predicts Falcon Heavy

launch costs will range from a bull case of $33 per kg to a bear case of $300 per kg,

with a base case of $100 per kg.

Figure 3.8: Launch Cost Predictions [198]

Using a similar log-normal relationship with cone of uncertainty, as demonstrated

by Lamassoure with 30% volatility applied to LEO constellation market forecasts

[142], piece-wise linear representations of the Citi Research launch cost projections

provide probabilistic characterization of this critical uncertain parameter. We can

assess the accuracy of these projections by comparing their predictions for 2020 to

2025 with the actual present-day launch costs: launch cost for Falcon 9 is presently

$3,986 [200], not $400. This thesis therefore uses a simplified launch cost projection

model with an αm based off the linear curve between present cost ($3,986, 2025) and

the Citi bear case in 2040 ($300, 2040). After 2040, αm = 0 to represent the launch

cost leveling out. The volatility parameter σm is approximated at 0.1 until 2024.
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Since the launch cost projections only go until 2040, σm increases to 0.35 after year

2040 to reflect increased uncertainty.

Launch timing uncertainty follows an exponential distribution model, with pro-

cessing time Tprocessing = 3 months and mean launch delay µlaunch = 2 months:

Tlaunch = Tprocessing + Xlaunch, Xlaunch ∼ Exponential(µlaunch) (3.2)

For Active Debris Removal (ADR) missions launched directly from Earth, process-

ing time follows a learning curve as manufacturing and launch experience accumulates:

adrTprocessing = min
time

+(initialextraTime × e−λt) (3.3)

where mintime = 0.5 years, initialextraTime = 1.5 years, and λ = 0.2303.

Figure 3.9: Cone of Uncertainty, Geometric Diffusion [142]

Additionally, this framework assumes that downmass payload capacity on reusable
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second stages is 1/3 of its launch payload capacity.

ADR Vehicle Cost Modeling

ADR vehicle costs are modeled using a time-based exponential decay starting from an

initial cost of $48,000,000 [101]. The cost incorporates a learning curve effect based

on the number of vehicles manufactured. Equation 3.4 provides the cost multiplier

n = {1, 2, . . . , Nmax}; value(n) = Pmin + (1 − Pmin) · e−λn (3.4)

where n represents the number of ADR vehicles added (starting from 1), Nmax is

the maximum number of ADR vehicles considered (assumed to be equal to the number

of planes, 18), Pmin is the minimum ADR cost fraction (asymptotic limit), which is

randomly sampled between 0.5 and 0.8, and λ is the learning exponent controlling

the rate of decay, which is randomly sampled between 0.1 and 0.5.

Additionally, a time-based cost reduction applies with annual reduction rate r =

0.03 and time t in years:

cost reduction = (1 − r)t (3.5)

Space-Based Operations and Costs

ADR vehicles experience variable collection success rates that improve according to

a learning curve trend:

Sn = 1 − (1 − S0) · n−λ, ∀ n ∈ {1, 2, . . . , Nmax} (3.6)

where Sn represents the probability of successfully collecting the n-th satellite, n

is the number of collected satellites (starting from 1), Nmax is the maximum number

of collected satellites considered to impact the learning curve (assumed to be 50,
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after which the collection probability remains constant), S0 is the initial collection

probability ranging between 0.7 and 0.99, and λ is the learning exponent controlling

the improvement rate, ranging between 0.05 and 0.25.

Space-based operation costs begin at $250,000 per operation and evolve following

the same geometric random path as other space-based services, as these capabilities

are assumed to be interrelated. The ADR operation cost for RPO satellites is one

third the typical ADR operation cost ($83,250 per operation) because RPO satellites

are upgraded to be cooperative targets, and the maneuver duration is shorter due to

this enhanced capability.

Warehouse Cost Uncertainty

Warehouse cost uncertainty mirrors the ADR vehicle cost modeling approach, with

a total cost of $100,000,000 that decreases with each new warehouse added to the

system. This cost includes the manufacturing and operation cost, but does not include

launch cost or the cost of fuel, spare, and upgrade resupplies. The learning-curve-

based reduction follows:

n = {1, 2, . . . , Nmax}; value(n) = Pmin + (1 − Pmin) · e−λn (3.7)

where n is the number of warehouses added (starting from 1), Nmax is the max-

imum number of warehouses considered, Pmin is the minimum performance level

(asymptotic limit), and λ is the learning exponent (rate of decay) randomly sam-

pled between 0.1 and 0.5.

Warehouse Maintenance Cost Modeling

In addition to initial construction and operational costs, warehouses require main-

tenance every 15 years. The cost associated with each warehouse repair is modeled

using a lognormal distribution to capture the high variability and right-skewed nature
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of major infrastructure repair costs:

Cfailure ∼ Lognormal(µ = ln(5 × 106), σ = 1.0) (3.8)

where the median failure cost is approximately $5 million, while σ=1.0 allows for

significant variability. This modeling approach reflects the reality that warehouse

infrastructure failures can range from minor system repairs to complete facility re-

construction, depending on the nature and severity of the failure event.

The total warehouse-related costs over the mission lifetime thus include initial

construction costs (with learning curve and time-based reductions), operational costs,

and stochastic failure repair costs that occur throughout the warehouse operational

life.

Technology Obsolescence Modeling

Technology obsolescence represents another critical uncertainty source, previously

recommended for future work by Lamassoure [142]. Since then, researchers have de-

veloped sophisticated technology obsolescence models for spacecraft [201]. Given the

rapid pace of advancement in the commercial space industry, technology obsolescence

has become increasingly important, with many spacecraft operators choosing LEO

and shorter life cycles specifically for the flexibility to upgrade satellites as technol-

ogy evolves.

Technology obsolescence is captured using a Weibull-based utility function that

reduces satellite revenue after reaching obsolescence time, based on the utility func-

tion u(t) developed by Geng et al. [201]. The model employs a 3-parameter Weibull

distribution with β = 2. The intensity metric is randomly determined for each sce-

nario, with time to obsolescence drawn from a Weibull distribution having shape

parameter k = 2 and scale parameter λ = 1. The index, i, represents the individual

revenue contributions of each satellite in the constellation.
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ui(t) = uo,ie
−
((t−Tobs,i)

θobs,i

)β

for t ≥ Tobs,i,

utotal =
∑

i

ui(t).

(3.9)

Geng et al. demonstrate how technology obsolescence impacts spacecraft utility

degradation and Net Present Value (NPV) calculations [201]. This framework applies

this approach to customer NPV calculations to capture rapidly evolving satellite

technology effects. When customers opt to receive servicing, the obsolescence timer

Tobs resets, providing a mechanism for technology refresh. In each scenario, the time to

obsolescence (Tobs in years) and intensity of obsolescence (θobs in years), are randomly

selected from ranges [7,20] and [1,5], respectively.

Figure 3.10: Spacecraft Present Value with Technology Obsolescence [201]

Satellite Failure Rate Modeling

Based on OneWeb’s observed experience of 4 satellite failures over 4 years [202] [203],

this framework sets the baseline failure rate to 1 satellite failure per year. Mean Time

Between Failure (MTBF) is calculated as:
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MTBF =
(

1
failureRate/(numPlanes × totalSatellitesPerPlane)

)
(3.10)

Each satellite receives an assigned failure time based on the MTBF using an

exponential distribution:

Tfailure ∼ Exponential
( 1

MTBF

)
(3.11)

While simulations begin with a baseline of 1 failure per year, this failure rate

decreases over time to reflect improving satellite reliability:

f = f0 − min(0.1 · er·t, 0.99) (3.12)

where f is the current failure rate, f0 is the original failure rate, r is the failure

rate change rate (randomly sampled from a uniform distribution between 0.005 and

0.08), and t is current time.

This approach differs from previous work by Luu et al., who used a Markov process

with failure rate 0.3 approximated from the Iridium constellation [3], and Saleh et al.,

who set failure rate to λ = 1/mean mission length [141]. Jakob et al. approximate

OneWeb and Starlink constellation failure rates at 0.05 failures per year [14]. The

framework in this thesis, however, uses more recent observational data and includes

temporal improvement trends.

Having defined failure and obsolescence properties, it is important to distinguish

the three different satellite states that are modeled in this framework: retirement,

failure, and obsolescence. When a satellite is retired, it means that it has run out

of propellant aside from its designated deorbit fuel and requires refueling service in

order to extend its lifetime. When a satellite is obsolete, it provides reduced revenue

if it is active in the constellation, contributing to indirect cost. Once it is repaired,
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either on Earth or in a capable warehouse, its time to obsolescence is reset. When a

satellite fails, it requires repair in order to have any functionality again.

Operational Uncertainty and Failure Classification The simulation frame-

work addresses operational uncertainties, with particular emphasis on collision risks

arising from satellite failures. The simulation distinguishes between failure types,

where certain failures result in completely inoperable satellites. Constellation opera-

tors face regulatory requirements to secure new FCC authorization for replacement

satellites. The FCC evaluates each application considering the cumulative collision

risk presented by the constellation [204][2].

Active debris removal services function as an insurance mechanism for constella-

tion operators, preventing collision-related costs that could substantially exceed the

ADR mission expenses. Based on these considerations, the framework operates un-

der the assumption that all failed satellites receive ADR services, with 50% of failed

satellites experiencing replacement authorization delays until the failed satellite is

removed.

Collision Avoidance and Collision Event Costs

Collision probability depends on the number of failed satellites and mission duration:

Pcollision = 1 − e−β·Nfail·T (3.13)

where Nfail is the number of failed satellites, T is the number of years, and β = 0.01

represents the collision hazard rate per satellite per year. The base cost of collision-

related events is defined as Cbase = $10, 000.

The probability of cascade-type catastrophic events increases with time:

Pcascade = min(0.02 · Tcascade, 0.5) (3.14)
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Collision costs are drawn from uniform distributions that depend on whether a

cascade event occurs:

Ccollision =


Cbase · U(1000, 10000), with probability Pcascade

Cbase · U(1, 1000), with probability 1 − Pcascade

(3.15)

The actual incurred cost is:

C =


Ccollision, if a collision occurs (with probability Pcollision)

0, otherwise
(3.16)

Operational and Cost Uncertainties

Beyond the uncertainty sources characterized above, the CAAS framework incorpo-

rates numerous operational and cost parameters that exhibit significant epistemic

uncertainty. These parameters represent aspects of the system where limited histori-

cal data, emerging technologies, or novel operational concepts prevent confident point

estimates. Rather than making potentially erroneous assumptions about these uncer-

tain parameters, this framework employs Latin Hypercube Sampling (LHS) within

a Design of Experiments (DOE) approach to systematically explore the parameter

space of these critical unknowns.

Latin Hypercube Sampling provides an efficient method for exploring high-dimensional

parameter spaces while ensuring representative coverage across all parameter ranges.

LHS divides each parameter’s range into equal probability intervals and samples ex-

actly once from each interval, ensuring more uniform exploration of the parameter

space with fewer samples. This approach is particularly valuable for computationally
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intensive simulations where exhaustive parameter exploration would be prohibitively

expensive.

The operational and cost uncertainties incorporated through Latin Hypercube

DOE are summarized in Table 3.3. These parameters represent key operational

aspects and cost drivers where data is sparse, emerging technology performance is

uncertain, or novel operational concepts lack empirical validation.

Operational Efficiency and Learning Parameters Several parameters capture

the potential for operational efficiency improvements through learning and scale ef-

fects. Earth-based repair and refuel operation cost streamlining multipliers (0.5-1.0)

acknowledge that ground-based servicing operations may benefit from economies of

scale and satellites that are upgraded to be refuelable and repairable in space. The

lower bound of 0.5 represents a scenario where operational efficiencies reduce costs

by 50%, while the upper bound of 1.0 assumes no efficiency gains beyond baseline

estimates.

Learning curve exponents for both warehouse costs (0.1-0.5) and ADR costs (0.1-

0.5) reflect uncertainty in how quickly experience accumulation translates to cost re-

ductions. Lower exponent values indicate slower learning, while higher values suggest

rapid cost improvements with experience. The corresponding minimum cost frac-

tions (0.5-0.8 for both warehouse and ADR systems) represent the asymptotic cost

level achievable through learning, acknowledging that some baseline costs cannot be

eliminated regardless of experience.

ADR Technology Performance and Maturation ADR operational performance

parameters acknowledge the nascent state of active debris removal technology. Initial

success rates (0.7-0.99) span from moderately reliable early operations to near-perfect

performance as systems mature. The ADR success rate learning curve exponent

(0.05-0.25) captures uncertainty in how quickly operational experience translates to
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improved collection reliability.

Satellite Upgrade and Enhancement Costs Satellite upgrade cost multipliers

reflect the uncertain costs of incorporating additional capabilities into satellite de-

signs. RPO (Rendezvous and Proximity Operations) capability upgrades (1.0-1.5x

baseline cost) represent the most significant design modifications, requiring addi-

tional sensors, computing power, and maneuvering capability. Repair upgrade costs

(1.0-1.3x) assume moderate increases for standardized interfaces and diagnostic ca-

pabilities. Refuel upgrade costs (1.0-1.2x) represent the smallest premium, reflecting

relatively mature refueling interface technologies. It’s important to note that while

this framework includes cost penalties related to satellite upgrades, it assumes satellite

upgrades to do incur significant mass penalties.

These ranges recognize that satellite upgrade costs depend heavily on implemen-

tation approach, integration complexity, and economies of scale across constellation

deployment. Early implementations may incur significant cost premiums, while ma-

ture designs with standardized interfaces may approach baseline satellite costs.

Novel Operational Concepts Satellite return to Earth operations represent a

novel concept with substantial cost uncertainty. The cost multiplier relative to present

launch costs (0.2-0.99) spans from highly efficient return systems that cost only 20% of

launch costs to expensive return operations approaching full launch costs. This wide

range reflects fundamental uncertainty about return system architectures, reusability,

and operational efficiency.

The timing parameter for when satellite return becomes feasible (years 1-15) ac-

knowledges uncertainty in technology development timelines and regulatory approval

processes. Early availability (year 7) assumes rapid deployment of return capabilities,

while later availability (year 15) reflects more conservative technology development

and certification timelines.
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System Reliability Evolution The satellite failure rate change rate (0.005-0.079

per year) captures uncertainty in how satellite reliability improves over time. This

parameter affects the exponential improvement model for satellite failure rates, with

lower values representing gradual reliability improvements and higher values indicat-

ing rapid advances in satellite design and manufacturing quality.

Justification for Parameter Ranges The ranges are intentionally broad to cap-

ture genuine epistemic uncertainty while remaining physically and economically rea-

sonable. Conservative bounds ensure that extreme scenarios remain plausible rather

than representing purely academic exercises.

This approach explicitly acknowledges uncertainty rather than masking it with ar-

bitrary point estimates. By systematically exploring these parameter ranges through

Latin Hypercube sampling, the framework provides insights into which uncertain-

ties most significantly impact system performance, enabling targeted research and

development efforts to reduce critical uncertainties.

Some costs have a greater basis for estimation and are incorporated as point-

estimates within this framework. These cost assumptions and their justification are

presented in Table 3.5. However, there is still uncertainty regarding these cost as-

sumptions, so sensitivity testing on select deterministic values is conducted to de-

termine if perturbations impact overall rank order of top performing configurations.

Details on this portion of the experimentation is provided in subsubsection 4.3.3.

Uncertainty Incorporation and Monte Carlo Implementation

The framework generates Monte Carlo scenarios where each scenario contains pre-

determined paths of uncertain variables sampled from their respective distributions.

These sources include mega-constellation revenue, technology obsolescence, launch

cost, collision events, and random failures, all assumed independent of customer
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decision-making. Each Monte Carlo scenario creates a 30-year timeline for these

uncertain variables, initialized at the start of the simulation.

For this screening framework, assumptions and simplifications preserve the simu-

lated effect of uncertainty while managing computational cost and model complexity.

Figure 3.11: Monte Carlo Scenario Construction

This comprehensive uncertainty characterization enables the flexibility framework

to evaluate Collection-as-a-Service architectures under realistic uncertain conditions,

supporting robust decision-making for sustainable space operations and the advance-

ment of a circular space economy.

3.3.3 Formulation Question 1.3: Concept Generation

Formulation Question 1.3
How to develop the concept generation?

The concept generation phase determines which design elements should be in-
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cluded in the framework, identifying the most promising flexible mechanisms and

strategies. The literature review, described in the previous chapter, revealed crit-

ical limitations in previously proposed LEO OOS concepts that informed the con-

cept generation decisions of this thesis. Proliferated servicing pods, while innovative,

demonstrated insufficient value proposition, providing benefits only in narrow sce-

narios with high failure rates when timeliness received priority weighting. Similarly,

traditional one-to-one and one-to-many servicing CONOPs fails to address the fun-

damental economic and maneuvering challenges of LEO operations, particularly the

cost-effective nature of proliferated constellations and the dominance of established

sparing strategies. Cooperative maneuvering showed promise but remained limited

to chemical propulsion systems and one-to-many architectures, failing to address the

electric propulsion systems used by most mega-constellations.

The concept generation phase strategically focused on three key design elements

that address these identified gaps. CAAS emerged as the primary concept because it

builds directly upon Jakob et al.’s multi-echelon sparing strategy, which is an approach

that already appeals to satellite operators’ fundamental needs for cost reduction and

coverage maintenance. Rather than competing with spare strategies, CAAS extends

and enhances them by transforming spare warehouses into flexible collection hubs

that can upgrade to provide servicing capabilities. This approach addresses the classic

“chicken-and-egg” problem through modularity and incremental upgrades, allowing

the infrastructure to evolve without requiring massive upfront investment in unproven

technologies.

Cooperative maneuvering was retained but re-conceptualized beyond the scenar-

ios previously studied. The framework incorporates cooperative maneuvers within

the context of many-to-many servicing architectures and approximates the cost and

duration associated with electric propulsion systems, making it more applicable to

contemporary mega-constellation operations. Servicing at designated warehouses was
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prioritized over proliferated pods because warehouse-based operations provide supe-

rior economies of scale, leverage J2 drift effects for efficient plane changes, and offer

the flexibility to incrementally add capabilities as market conditions evolve.

These concept selections collectively address the core flexibility requirements iden-

tified in the literature: providing immediate value to customers through enhanced

sparing capabilities, creating pathways for incremental technology adoption, enabling

economies of scale through centralized operations, and maintaining compatibility with

existing operational paradigms. By building upon proven sparing strategies rather

than replacing them, the selected concepts reduce implementation risk while preserv-

ing optionality for future technological developments, embodying the fundamental

principles of flexible system design under deep uncertainty.

3.3.4 Formulation Question 1.4: Design Space Exploration

Formulation Question 1.4
How to conduct design space exploration?

Methods for solving real options models include binomial trees, finite different

methods, and Monte Carlo simulations, to name a few. While binomial trees and

related methods are computationally efficient, they are only useful for problems with a

single source of uncertainty. Binomial lattices and decision trees suffer from the curse

of dimensionality for such a large design space. Simultaneously including multiple

sources and multiple flexible options requires multinomial lattices, which complicate

both decision policies and computation [205]. Additionally, binomial lattices rely

on path-independence, which is a valid assumption for option pricing models when

markets are efficient, but is not always valid for most engineering systems. As Cardin

et al. note, engineering systems are sensitive to initial conditions, inputs, and past

events, so it is important to be mindful of past history when making a decision
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about the future [205]. Simulation-based methods not only handle multiple sources

of uncertainty, they also offer more flexibility for uncertain parameters’ probability

distributions.

Decision analysis employs decision trees and backward induction (as used in dy-

namic programming, [206]), which is often intractable for frameworks with multiple

options and multiple uncertain variables. Discretized scenarios, often paired with

stochastic optimization, use either direct formulation or decision-rule formulation to

identify flexible designs [207]. Hamdan et. al utilize staged decision analysis for

complex, stochastic, and time-variant systems and capture the effect of evolving un-

certainty.

Stochastic programming often requires advanced methods, therefore, they are of-

ten represented with deterministic equivalent formulations [207]. Meanwhile, sim-

ulations paired with decision rules can account for multiple options and uncertain

variables via scenarios [6]. The simulation method can be computationally expensive

due to the number of scenarios and decision rule variables, so it is useful to sim-

plify simulation models such that runtime is acceptable and system behavior is still

properly represented.

Formulation Question 1.4.1: Analogous Frameworks

Formulation Question 1.4.1
Are there any analogous flexibility frameworks with similar properties?

A 2013 offshore oil infrastructure framework, previously introduced in section

2.9.2, paired a bottom-up, integrated systems model with Monte Carlo simulations

and decision rules to screen the value of flexible options [12]. This framework contains

many of the same desired characteristics for the proposed OOS flexibility framework

in this thesis, such as:
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1. Multi-level flexibility

2. Large design space

3. Multiple sources of uncertainty

4. Monte Carlo scenarios

5. Combinatorial effect of options

Observing that recent oil and gas basin discoveries are small and dispersed, Lin

et al. identify subsea tiebacks that connect new basins to existing offshore facilities

as a means of leveraging these discoveries without needing to build new, expensive

rigs [208]. This is especially useful given the volatility in the oil and gas industry

as well as uncertainties about basin size and facility performance. There are many

challenges regarding the design and operations of subsea tiebacks, such as where to

place them and when. There is also the question of where to place new facilities and

whether these facilities should have the ability to expand capacity in the future.

This application is analogous to OOS for proliferated constellations in LEO be-

cause it considers flexible options to leverage oil from small and scattered sources

rather than from a single, large, accessible oil field, of which there are fewer and

fewer. Monolithic oil fields are akin to large satellites in GEO, which provide a more

immediate business case for supporting infrastructure. With flexibility and economies

of scale, however, novel, flexible enablers such as subsea tiebacks and collection hubs

can pave the way for innovative infrastructures that better utilize available resources.

After identifying multi-level flexibilities, such as the various combinations of fields

and facilities, Lin et al. develop an integrated systems model to represent the project

life time and determine its net present value (NPV). Flexible options are imple-

mented when conditions trigger their associated decision rules. By running multi-

variate Monte Carlo scenarios in both flexible infrastructures and inflexible baseline
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models, Lin et al. are able to examine the best options, and combination of options,

by conducting statistical analysis. The outer Monte Carlo loops creates scenarios

that characterize the state of infrastructure elements and the market in one instance.

Meanwhile, the inner loop simulates the entire lifecycle of the oil field given the un-

certainties sampled within the outer loop. The inner loop triggers the decision rules

that are responsible for infrastructure reconfiguration. Embedded loops captures un-

certainty evolution over the course of the project.

In their 2008 thesis, Lin develops this screening framework and provides further

explanation for the methodology choices. Lin determines that mid-fidelity models are

sufficient for screening options because they represent system behavior while provid-

ing quick computational time. High-fidelity models at the early conceptual design

phase obfuscate the big picture and can potentially mislead the user, given the lack

of complete and accurate inputs [208]. Meanwhile, low-fidelity models could over-

simplify the dynamics of a complex system. Lin’s mid-fidelity integrated screening

models represent the feedback loop between inputs, production systems, and output

systems, capturing the physical flows, logical flows, and financial flows between ele-

ments. Mid-fidelity models take on the order of seconds to minutes to run and provide

prediction error less than 10 to 20%. For this reason, mid-fidelity models are suitable

for screening design options ahead of detailed design.

Lin considers a taxonomy of different flexibility levels within their framework.

Strategic flexibility involves high-level technological concepts and configurations. Tac-

tical flexibility is the system’s ability to modify behavior and performance, but not

the overall architecture. Lastly, operational flexibility means that a system can adjust

its operations to meet present conditions [208].

To trigger the implementation of flexible options, Lin utilizes conditional deci-

sion rules, embedded within decision trees. When certain conditions are met, the

framework implements the given flexible options. Lin tunes the decision trees for
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each flexible option with sensitivity studies. These decision rules are parametrically

tuned, but not optimized. However, this approach still provides sufficient performance

improvement when compared to the rigid baseline system.

Overall, Lin’s thesis presents a four-step process for screening flexible options

under multiple sources of uncertainty, containing a modeling, strategy synthesis, sim-

ulation, and screening phase. An important part of the process is using the framework

as a computational laboratory to determine the best decision parameters and best

combination of flexible options. Lin et al.’s experimentation process, which is revis-

ited in chapter 4, uses various designs of experiments (DOEs) to explore the design

space.

They measure infrastructure performance over the various Monte Carlo simula-

tions by comparing value-at-risk/gain (VARG) plots of the results which provides the

cumulative distribution of Net Present Value (NPV). An example of VARG curves,

shown in Figure 3.12, illustrate how flexible options can influence its shape. If the

VARG plot depicts profit, option B, compared to option A, provides higher value at

gain but lower value at risk and a lower average value. If curve A corresponds to a

flexible configuration, it illustrates how to added flexibility increases average profits

and alleviates risk at the 5th percentile compared to the inflexible configuration, curve

B. The switch from the inflexible configuration (curve B) to the flexible configura-

tion (curve A) does come with a trade-off, however, since the flexible option doesn’t

provide the same opportunity for large profits that B provides.

For their screening framework, Lin et al. produce a series of Monte Carlos that

sample from uncertainty distributions to create evolving trajectories [208]. When the

trajectory experiences a discrete jump, the range of uncertainty shifts with it. The

first step of their process is to create an initial distribution vector. Then, they update

the distribution vector at discrete time steps, applying random walk with decreasing

variation over time. As described in section 3.3.2, this thesis takes a simpler approach
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Figure 3.12: Example of a VARG Plot (Profit)

to characterizing uncertainty, creating uncertain scenarios at the initialization of each

simulation that are not impacted by decisions.

In summary, to address the identified requirements and gaps, the flexibility frame-

work presented in this thesis will screen flexible options and assess the impact of policy

by using simulation-based methods with decision rules and Monte Carlo scenarios.

This is a departure from previous OOS flexibility frameworks, which used classic real

options analysis with the backward induction process [142] [10] [141]. Details on de-

cision rule implementation are explained in section 3.5. All decision rule algorithms

are provided in Appendix B.

3.4 Formulation Question 2: Simulation Method Selection and Develop-

ment

Formulation Question 2
What simulation method is appropriate?

143



3.4.1 Space Logistics Modeling

Having established the structure of the flexibility framework, it is necessary to de-

termine the appropriate simulation method to capture the described CONOPs and

decision-making process. The simulation must be a computationally-efficient space lo-

gistics model that manages the logistics of the OOS infrastructures while maintaining

mid-level fidelity.

Network flow modeling stands as the state-of-the-art approach for space logistics,

having been perfected and tailored over a wide range of applications. Originating

from graph theory, network flow offers a distinct advantage due to its compatibility

with Mixed Integer Linear Programming (MILP), which enables efficient attainment

of global optima [93]. Space logistics requires a number of adjustments to traditional

network flow methods, starting with a generalization to include flows with gains and

losses [209]. Additionally, space logistics networks frequently contain several resources

that flow across arcs, necessitating the multi-commodity network flow formulation.

When commodities interact and flow is not conserved along arcs, it is necessary to use

a generalized multi-commodity network flow (GMCNF) [210] [211]. GMCNF prob-

lems are only capable of representing static networks, however, so for problems with

time-dependent characteristics, it is useful to use a time-expanded network approach.

Ho establishes a dynamic network framework that incorporates evolving technology

options and introduces time-expanded networks with linear programming [212] [213].

Since the development of these network flow formulations, there has been an

expansive body of work in the space logistics field that utilizes Time-Expanded, Gen-

eralized Multi-Commodity Network Flow, Mixed Integer Linear Programming, and

their variations [214] [215] [215] [216] [217]. Tristan Sarton du Jonchay’s 2022 dis-

sertation, entitled “Framework for the design and operations of sustainable on-orbit

servicing infrastructures dedicated to geosynchronous satellites,” provides a frame-

work that systematically determines optimal routes for on-orbit servicers in GEO

144



[20]. This framework is an adapted traveling salesman problem, using the Time-

Expanded, Generalized Multi-Commoditity Network Flow (TE-GMCNF) method to

capture time-sensitive, multi-arc behavior between nodes. The traveling salesman

method alone is insufficient for on-orbit servicing networks, because it fails to incor-

porate demand uncertainty and commodity flow to the service depots. Sarton du

Jonchay uses rolling horizons to adjust the logistics scheduling as changes in demand

(random failures) occur. At each horizon, Sarton du Jonchay implements mixed-

integer linear programming (MILP) to optimize logistics scheduling.

In Sarton du Jonchay’s operational concept, the OOS company launches and man-

ages orbital depots and impulsive-thrust service vehicles to service GEO satellites on

both a random and planned basis. The OOS company decides whether to provide

service when a potential customer experiences a random failure. If they decide to pro-

ceed, they send a servicer. Failure to meet the servicing deadline results in monetary

penalty. Following service, the dispatched service vehicle is available for its next op-

eration. Scheduling and supply chain are optimized concurrently. Sarton du Jonchay

includes a number of service options, such as inspection, refueling, station-keeping,

satellite repositioning, repair, mechanism deployment, and retirement. Resources,

such as vehicles, spares, and fuel, are regularly supplied from Earth via launch vehi-

cles. Service vehicles include notional tools such as refueling apparatuses, observation

sensors, dexterous robotic arms, and capture mechanisms. Servicers utilize fully au-

tonomous or semi-autonomous robotics. Sarton du Jonchay uses the framework to

compare architectures with specialized servicers (containing only the tools to do spe-

cific tasks) and generalized servicers (capable of doing many tasks). There are three

journal publications related to the thesis. The first paper assumes customer satellites

are distributed in the same circular orbit and only uses high-thrust equations [93].

The second paper includes both low-thrust and high-thrust maneuvers in the same

circular orbit [218]. The third paper allows for multi-orbit maneuvering [219].
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Like Lamassoure, Sarton du Jonchay’s demand uncertainty is based on random

services. The framework doesn’t include policy or environmental considerations, nor

does it include options for long-term collection as an on-orbit servicing option. Like

many other OOS frameworks and methodologies that argue GEO provides the best

OOS business case, Sarton du Jonchay’s thesis focuses exclusively on GEO. Sarton du

Jonchay’s framework does not not include incremental deployment or an assessment

of the value of flexibility, but it could be adapted to do so. They note that the

framework could accommodate a dynamic market forecast and provide insight on

useful infrastructure changes and updates when the framework is subject to sensitivity

analysis [20].

3.4.2 Discrete Event Simulation

While state-of-the-art, network flow models with optimization provide a higher degree

of fidelity than is necessary for a screening framework designed to evaluate flexible

options. The fundamental requirements established by Lin’s flexibility framework

[12] necessitate a simulation approach that can efficiently handle: (1) multi-level

flexibility with numerous option combinations, (2) multiple sources of uncertainty

through Monte Carlo scenarios, (3) dynamic decision rules that respond to evolving

conditions, (4) computational tractability for extensive scenario analysis, and (5)

sufficient fidelity to distinguish between alternative strategies without unnecessary

complexity.

While Sarton du Jonchay’s formulation for TE-GMCNF with Rolling Horizons

matches several characteristics of the problem presented in this thesis, the degree of

necessary adjustments and additional constraints would prove not only computation-

ally intractable, but it would also provide a higher degree of fidelity than is necessary

for the purposes of a flexibility framework that seeks to compare options to one an-

other. The complexity of incorporating the CAAS CONOPs, including multi-level
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decision-making, incremental infrastructure deployment, and dynamic upgrading of

warehouses, would require extensive modifications to existing MILP formulations,

significantly increasing computational burden without proportional gains in insight

for option screening purposes.

Discrete Event Simulation emerges as the appropriate methodological choice for

several key reasons that align with Lin’s framework requirements. First, DES natu-

rally accommodates the time-dependent, event-driven nature of satellite operations,

failures, and servicing decisions without requiring the discretization and linearization

constraints inherent in network flow approaches. Second, DES enables the straight-

forward implementation of complex decision rules that can adapt to evolving system

states and uncertainty realizations. Third, the object-oriented nature of DES frame-

works allows for modular representation of system components (satellites, ADR vehi-

cles, warehouses) with individual properties and behaviors that can be easily modified

to test different flexible options.

DES has been successfully employed in space logistics applications, demonstrating

its suitability for this domain. Sears et al. use DES to investigate the impact of

on-orbit recycling and manufacturing capabilities on the value of on-orbit servicing

[86], while DES is also frequently employed in analogous logistics applications, such as

maintenance strategies for the civil aviation industry. The computational efficiency of

DES enables the extensive Monte Carlo simulation required to explore the uncertainty

space defined in Lin’s framework, allowing for robust statistical analysis of flexible

option performance across thousands of scenarios.

A discrete event simulation provides a sufficient test bed to compare the value of

options while maintaining the computational tractability necessary for comprehensive

uncertainty analysis. The DES approach implemented in this research utilizes event-

driven time advancement, state-dependent decision rules, and continuous monitoring

of system performance metrics that enable the identification of conditions under which
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flexible options provide value.

The DES framework’s ability to incorporate stochastic elements, such as random

satellite failures, uncertain demand patterns, and technology obsolescence, through

Monte Carlo sampling aligns perfectly with Lin’s emphasis on scenario-based un-

certainty representation. Moreover, DES naturally accommodates the hybrid un-

certainties arising from interactions between servicing-infrastructure-level decisions,

satellite-fleet-level decisions, and individual-satellite-level decisions, which are central

to the CAAS value proposition but would be challenging to represent in optimization-

based approaches without significantly increasing problem complexity.

3.5 Formulation Question 3: Decision Rule Creation and Calibration

Formulation Question 3
How to create and calibrate decision rules?

Decision rules are commonly featured in flexibility frameworks. Chen et al. pair

decision rules with multi-stage stochastic programming to mitigate against launch

delays for ISS resupply missions [134]. Their decision rules and Pareto front of ex-

pected mission cost vs expected mission performance allow the user to determine how

many resources to launch and how to avoid lost productivity. Chen et al. note that

decision rules don’t require gradients and can be directly incorporated into mixed-

integer linear programming formulations. Cardin et al. also use decision rules in

their multi-stage stochastic programming framework, finding that optimization with

decision rules provide a sufficient approximation of optimal solutions, comparing their

results with those found by Real Option Analysis (ROA) [205]. In a different paper,

Cardin et al. apply the decision rule approach to on-demand vehicle-sharing [136].

The OOS flexibility framework developed by Saleh, Lamassoure, and Hastings

uses a form of decision tree analysis to trigger flexible options at each decision point

[141]. This decision is made from the customer’s perspective and reacts to the present
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operational mode and present state of uncertainty. They chose the optimal decision

mode by maximizing expected value.

In cases where ROA is intractable, decision rules provide a useful approximations

of the optimal solution [205]. Generic decision rules also provide guidance for human

decision-makers, since they are intuitive and straight-forward. Decision rules can

take the form of decision trees [125], decisions networks [220], and logical conditions.

In Decision Tree Analysis (DTA), decision-making depends on how the discretized,

uncertain variables unfold over time. The conditions for making a particular decision

depends on the particular tree limb. Decision rules can also take the form of logical

“if, elseif, then” statements, where actions are triggered based on estimated state

vectors [208]. These types of decision rules, which can be tuned with experimentation,

closely resemble human decision-making as uncertainty scenarios are revealed over

time. Lastly, decision networks characterize decision-making with chance and decision

nodes in a time-expanded network [220]. This approach allows the user to consider

the evolution of the architecture alongside the evolution of decision-making.

There are four generic types of decision rules: zero-order, condition-go, linear, and

constant [205]. Conditional-go decisions with the “if, elseif, then” format are based

on an estimate of future conditions and past information. While conditional-go rules

don’t provide optimal solutions, they provide simple, useful, and practical guidelines

for decision-making.

This thesis contains a series of conditional-go decision rules with parametric, tun-

able multipliers for an array of individual-satellite-level decisions, satellite-fleet-level

decisions, and servicing-infrastructure-level decisions. The algorithms for all decision

rules can be found in Appendix B and are explained in greater detail in the sections

below.
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Satellite-Level Decision Rules

The simulation implements comprehensive decision trees for each satellite experi-

encing failure, retirement, or collection events. This logic is encapsulated in the

DecisionTree class, which evaluates all available options based on satellite state,

capabilities, and technology obsolescence. Figure 3.13 illustrates the decision tree for

individual satellite decision logic.

Figure 3.13: Satellite-Level Decision Tree Logic
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The decision function directs each satellite through a decision process based on

its location (in space or on Earth), operational status (retired or failed), obsolescence

level, serviceability (refuelable or repairable), and available infrastructure (warehouse

capabilities). For satellites in space, three main pathways are evaluated. If a satellite

is retired, not obsolete, and refuelable—with refueling infrastructure available—the

function compares the NPV of refueling versus launching a new satellite. If refueling

is more valuable, the satellite is marked for in-space refueling; otherwise, it proceeds

to end-of-life evaluation. A similar process applies for satellites that are obsolete but

repairable, or failed but still repairable, provided repair infrastructure exists. If repair

NPV exceeds launch NPV, the satellite is serviced; if not, it moves to the next step.

When in-space servicing is not possible or not economically viable, the satellite

is evaluated for deorbit or Earth return. This function compares NPVs for Earth

return and refurbishment against launching new assets. A tuned 1.1 multiplier biases

toward Earth return when its value justifies it. If return is preferable and feasible,

the satellite is scheduled for recovery; otherwise, it is deorbited and removed from

service.

NPV Calculation Framework The standardized NPV calculation process is as

follows:

1. Determine time horizon: Calculate years until obsolescence = Tobs− obso-

lescence age, where Tobs is determined by 1/obsolescence rate

2. Project annual cash flows: For each year until the satellite becomes obsolete:

Cash Flowyear = Yearly Revenue (3.17)

3. Apply periodic refueling costs: Every design life years (typically 5 years),

deduct refuel cost from that year’s cash flow
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4. Calculate Net Present Value:

NPV =
Tobs∑

year=1

Cash Flowyear

(1 + rd)year
− Initial Service Cost (3.18)

where rd is the discount rate. This thesis assumes a constant, risk-free discount

rate of 0.03.

5. Add policy incentives: NPV final = NPV + Reuse Subsidy (if applicable)

6. Compare to the NPV of a new satellite: Conduct similar calculations for

a new satellite with the same time horizon, including relevant costs, such as

launch and deorbit costs

Satellite Fleet-Level Decision Rules

RPO Upgrades The RPO upgrade decision rule determines when a customer

should begin upgrading newly manufactured satellites to be capable of rendezvous

and proximity operations to support self-delivery to the warehouses. This decision

is periodically evaluated (every 3 months) based on the evolving economic trade-offs

between building new satellites and refurbishing existing ones.

The upgrade rule activates under the following conditions: RPO decisions are

enabled (flexible decision-making is enabled), RPO upgrades have not already been

adopted, and in-orbit warehouse infrastructure exists. Once these preconditions are

satisfied, the algorithm performs a cost-benefit analysis.

Two main cost comparisons are made: (1) the cost of building and launching new

satellites versus (2) the total cost of servicing existing satellites, including refueling,

repairing, refurbishment, Earth return, and ADR (Active Debris Removal) operations.

These servicing costs are adjusted based on whether the customer has enabled refuel

or repair upgrades (which apply cost streamlining effects for Earth-based service and

enable space-based service) and whether the warehouse infrastructure has refueling

152



and repairing capability. The expected number of satellites eligible for refurbishment

is estimated based on the remaining mission time, orbital configuration, and upgrade

adoption percentages.

Market readiness and warehouse utilization are also factored in, along with policy

incentives such as rebates or government subsidies. If the cost savings from ser-

vicing (relative to new satellite production) exceed the total RPO upgrade invest-

ment—computed as a fixed cost plus a per-satellite upgrade cost scaled by the ex-

pected satellite count—then the customer switches to producing RPO-capable satel-

lites.

The percentage of satellites upgraded for Rendezvous and Proximity Operations

(RPOD) changes dynamically based on system readiness and customer configuration.

Before in-space refueling capability is enabled, the upgrade decision relies on a pre-

refuel probability set by the user. This reflects a cautious approach, where only

a small fraction of new satellites are upgraded for RPOD due to limited servicing

support. Once refueling capability becomes available, the percentage increases to

a post-refuel-upgrade value, reflecting increased confidence in the satellite servicing

infrastructure.

This upgrade percentage directly influences how many satellites are considered

eligible for RPO upgrades. The number is calculated as the product of remaining

five-year operational cycles, the number of orbital planes, satellites per plane, and

the factor value. As a result, the proportion of RPO-upgraded satellites evolves over

time, influenced by the existing number of RPO satellites.
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Figure 3.14: RPO Upgrade Decision Rule Tree
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Figure 3.15: Satellite Refuelability/Repairability Decision Tree
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This flexible structure allows the RPO adoption rate to scale appropriately. When

there are fewer than (number of warehouses)*(warehouse capacity) active satellites

with RPO-capability, the percentage of new satellites having RPO-capability is 25%.

Otherwise, the percentage of new satellites with RPO-capability is 15%.

The result is a dynamic, data-driven approach that activates RPO upgrades only

when they are economically justified and logistically supported by infrastructure and

market conditions. Figure 3.14 illustrates the decision tree for the RPO upgrade

decision.

Satellite Refuelability and Repairability Upgrades Customer decisions about

investing in satellite capability upgrades (refuelability or repairability) employ Monte

Carlo breakeven analysis embedded within the decision tree, illustrated in Figure 3.15

The upgrade decision process begins with the setup phase, which defines the fixed

R&D cost, per-satellite upgrade cost, projected years remaining, and current col-

lection rate. The process then conducts a Monte Carlo simulation running trials

(10,000), where each trial samples the collection rate from a normal distribution with

mean equal to the historical rate and standard deviation equal to 2 collected satel-

lites. Negative rates are clipped to zero, and the total refurbishments over remaining

years is calculated as rate multiplied by years.

Future collection rates are modeled as normally distributed, R ∼ N (µR, σ2
R), to

capture operational uncertainty in satellite collections per year. The normal dis-

tribution is justified by the Central Limit Theorem, as collection rates aggregate

effects from multiple independent factors including market conditions, technical per-

formance, and orbital dynamics. Using Monte Carlo simulation with N = 10,000
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Figure 3.16: Add Warehouse Decision Rule Tree
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samples, breakeven conditions are evaluated across the distribution of possible futures.

For the savings calculation, each trial computes the savings per satellite as the dif-

ference between the sum of new satellite cost and launch cost minus the refurbishment

cost. Discounting is applied using the formula:

Total Savings =
T∑

t=1

Savings × rate
(1 + rd)t

(3.19)

The investment calculation determines the total investment required through:

Total Investment = Fixed R&D + (Per-Sat Upgrade Cost × Total Refurbishments)

(3.20)

Breakeven determination identifies the minimum number of refurbishments where

total savings are greater than or equal to total investment. Finally, the decision

rule approves upgrade investment if the mean expected refurbishments exceed the

breakeven threshold and the current collection rate exceeds the minimum threshold.

Servicing-Infrastructure-Level Decision Rules

Add Warehouse The decision rule that evaluates whether to add new orbital

warehouse capacity is based on economic viability, comparing potential revenue from

unserviced satellites against the cost of deploying new infrastructure.

The warehouse deployment decision process, illustrated in Figure 3.16, evaluates

both potential revenue and associated costs to determine when adding a new ware-

house is justified. Revenue is estimated from unserviced satellites, including failed

satellites requiring Active Debris Removal (ADR), retired satellites that are refuelable

or not, and additional income from penalty or rebate recovery depending on the active

policy scheme. Costs include the base warehouse construction cost (which may be

adjusted by multipliers depending on manufacturing cost trends and learning curve
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progress), launch costs tied to payload requirements, and possible upgrade costs for

refueling or repair capabilities. A new warehouse is added when projected revenue per

existing warehouse exceeds the adjusted cost, when early deployment thresholds are

met (such as having fewer than three warehouses), or when sufficient subsidization

funds are available. The decision logic is also sensitive to policy configurations, which

may influence costs through premiums, taxes, or fees, or offer financial subsidies to

Figure 3.17: Upgrade Warehouse Decision Rule Tree
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prompt infrastructure investment through government intervention.

Upgrade Warehouse The warehouse upgrade decision process, depicted in Fig-

ure 3.17, operates on a monthly basis and determines whether to enhance all existing

warehouses with capabilities for satellite refueling and/or repair. The decision begins

by evaluating the need for a refueling upgrade. If there are no refuelable satellites or

if the warehouses have already been upgraded for refueling, no action is taken. Oth-

erwise, the system calculates a cost delta, defined as the difference between the cost

of purchasing new satellites and the cost of servicing them, including expenses such

as refurbishment, refueling, Active Debris Removal (ADR), and potential revenue

from rebates or refunds (if applicable under the customer’s policy). It then computes

the fixed upgrade cost, which may be partially offset by government subsidies when

subsidy mode is active and sufficient funds are available. If the cost delta exceeds the

adjusted upgrade cost, scaled by a customer-defined multiplier, the system upgrades

all warehouses to support refueling operations.

Once the refueling decision is resolved, the system proceeds to assess the need

for a repair upgrade. This process mirrors the refueling logic: it checks for the

presence of repairable satellites and whether warehouses have already been upgraded.

If not, it recalculates the cost delta using updated service cost models that include

repair expenses, and then compares this to the adjusted repair upgrade cost (again

accounting for any subsidies). If the savings justify the investment, all warehouses

are upgraded for repair capabilities.

Throughout the process, the logic incorporates policy-driven incentives. These

include subsidy schemes that reduce upgrade costs and revenue enhancements from

recovered penalties (for failed satellites) or policy-driven rebates tied to satellite op-

erational lifetime. Together, these factors ensure that warehouse upgrades occur only

when economically beneficial, strategically necessary, and supported by broader pol-
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icy objectives.

3.5.1 Experimental Tuning Process

Tuning parametric decision values within the conditional-go decision trees follows the

guidance provided by Lin et al. [208]. Rather than optimize decision rules, they took

a trial and error approach to arrive at decision rules that provided sufficient downside

tail reduction and upside tail extension in their Value-at-Risk/Gain (VARG) plots.

This thesis takes a similar approach.

The parameter tuning process begins by identifying which multipliers or threshold

values require improvement. Multiple simulation scenarios are designed and executed,

systematically varying each parameter across a range. Each parameter setting is

evaluated based on objective metrics such as total cost. Statistical validation is

then applied using appropriate tests to determine which parameter settings produce

statistically significant differences in outcomes and whether observed improvements

represent reliable trends rather than random variation. Parameter values that reduce

costs while meeting statistical significance thresholds are selected. These validated

parameter values are then applied across all subsequent simulation iterations, ensuring

consistent decision-making behavior throughout the analysis.

Ideally, the decision rules should be optimized in order to obtain the best possible

results from the framework. However, the framework is intended to contain mid-

fidelty models that simply screen and rank the potential of the proposed CONOPs

and strategies. Optimizing these decision rules is recommended for future work, but

is outside the scope of this thesis.

Having defined the decision rules for each of the satellite and level options, the

following section explains how the decision rules are contained within the simulation

and react to events and the evolving uncertain landscape.
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3.6 Formulation Question 4: DES Component Modeling

Formulation Question 4
How to model the various components of the DES?

3.6.1 Formulation Question 4.1: Object Modeling

Formulation Question 4.1
How to model constellation and infrastructure objects?

The DES is structured using Python’s SimPy library for discrete event man-

agement and implements an object-oriented architecture to represent the complex

interactions between Active Debris Removal (ADR) vehicles, warehouses, customer

satellites, and stakeholder entities. Over the simulation duration of 30 years, the

framework explores a broad range of plausible scenarios through Monte Carlo simula-

tion to enable comparisons of robustness and relative performance between different

operational concepts and flexible options.

Object Class Architecture

The DES is structured using Python’s SimPy library for discrete event management

and implements an object-oriented architecture to represent the complex interactions

between Active Debris Removal (ADR) vehicles, warehouses, customer satellites, and

stakeholder entities. Over the simulation duration of 30 years, the framework ex-

plores a broad range of plausible scenarios through Monte Carlo simulation to enable

comparisons of robustness and relative performance between different operational

concepts and flexible options. The various object classes and their interactions while

Figure 3.19, later in the section, provides the comprehensive logic flow diagram. The

simulation implements six primary object classes that encapsulate the attributes of

the system elements. Figure 3.18 provides a top-level methodology illustration.
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Satellite Class

Each satellite object represents an individual spacecraft within the customer con-

stellation. The baseline constellation resembles the OneWeb architecture with 18

orbital planes, 36 satellites per plane, at 1200 km altitude with 86.4-degree inclina-

tion. The satellites track their orbital state through position parameters. Physical

properties include dry mass and fuel mass, while operational state management en-

compasses active, failed, retired, or deorbited status with associated event triggers.

Each satellite maintains capability flags as boolean indicators for refuelable and re-

pairable configurations, and tracks technology obsolescence through obsolescence age

(years) and rate, which influence revenue contribution if the satellite’s age exceeds the

time to obsolescence in that scenario. Service pricing is dynamically calculated based

on the satellite’s willingness-to-pay for collection, determined through NPV analy-

sis. Lifecycle event management includes start date, time to failure (exponentially

distributed), design life, and retirement triggers, while assignment tracking monitors

status for ADR collection assignment or other mission types.

The failure event mechanism operates by assigning each satellite a time to failure

upon initialization, sampled from an exponential distribution with mean time between

failures (MTBF) derived from the constellation-level failure rate. When simulation

time reaches the assigned failure time, the satellite’s status changes to ’failed’ and

a decision event is triggered to evaluate disposal options. Similarly, the retirement

event mechanism triggers when a satellite completes its design life, changing status

to ’retired’ and initiating the decision-making process.

ADR Vehicle Class

ADR vehicles are responsible for collecting failed and retired satellites and trans-

porting them to warehouses. The class implements collection logic with learning-

based success probability. Each ADR object tracks its current plane location or ware-

house location, maintains physical properties including dry mass, maximum payload
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capacity (mass-constrained), fuel mass, and specific impulse for propulsion calcula-

tions. The operational status indicates whether the vehicle is available, unavailable,

or in-transit. The ADR maintains a collected satellite inventory as a list of currently

held satellites with total collected mass tracking. It also adjusts its collection success

probability through a learning curve model.

The collection success mechanism follows a learning curve model representing

improving operational proficiency, expressed as:

Psuccess(n) = 1 − (1 − S0) · n−λ (3.21)

where n is the cumulative number of satellites collected (starting from 1), S0 is the

initial success probability (scenario-specific random value), λ is the learning exponent

controlling improvement rate (scenario-specific), and the probability plateaus after

Nmax collections. When an ADR attempts to collect satellites, each satellite undergoes

an independent Bernoulli trial with success probability Psuccess. Successfully collected

satellites are added to the ADR inventory and removed from the unassigned satellite

pool, while failed collection attempts leave satellites available for future attempts.

The drift and service process operates through the primary process function

drift and service, which monitors the ADR’s current orbital plane location and

evaluates collection opportunities when entering a new plane. The decision to initi-

ate collection is governed by multiple constraints including failure priority, revenue

potential, fuel feasibility, capacity constraints, and temporal alignment. Priority is

placed on failed satellites; if there is a failed satellite within a 5 year drift-time win-

dow of the ADR’s present location, the ADR vehicle won’t collect any other satellites

until it collects the failed satellite. Revenue potential requires that the sum of service

prices for satellites in the plane must justify operation costs. Fuel feasibility demands

that total mission fuel requirement must not exceed available fuel reserves. Capacity

constraints ensure that total collected satellite mass cannot exceed ADR payload ca-
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pacity (3 satellites). Temporal alignment requires that mission duration should align

with warehouse drift periods to enable timely delivery.

The collection decision algorithm is implemented through the ADR cost and benefits

helper function, which simulates potential collection scenarios using deep copies of

system objects to avoid modifying actual state during evaluation. The algorithm

first filters satellites in the current plane by status (failed or retired), assignment

(unassigned), and location (customer altitude), then sorts satellites by proximity to

minimize in-plane maneuver costs. It iteratively adds satellites to a potential col-

lection list while checking fuel constraints (cumulative fuel for rendezvous with each

satellite plus return to warehouse), mass constraints (total collected mass includ-

ing current satellite), revenue constraints (cumulative service prices minus operation

costs), and time constraints (mission completion before next warehouse drift arrival).

The algorithm calculates fuel requirements using Hohmann transfer equations for each

satellite rendezvous and final warehouse return, compares total mission costs (fuel,

operations) to the value of servicing the satellite to determine feasibility, and returns

the selected satellite list if feasible or an empty list otherwise.

Maneuver execution is handled through the maneuver function, which executes the

collection sequence. For each satellite in the selection list (in proximity order), the

function calculates fuel required for rendezvous using the rocket equation, deducts

fuel from ADR fuel mass, calculates maneuver time based on Hohmann transfer

duration, advances simulation time by maneuver duration, and applies collection

success probability via Bernoulli trial. If successful, the satellite status is updated to

’collected’, added to ADR inventory, and ADR payload mass is incremented. If failed,

the satellite is left unassigned and the failed collection attempt is logged. Both ADR

and satellite orbital parameters are updated. After the final satellite, the function

invokes go home to return to the nearest available warehouse.

The warehouse return logic is implemented through the go home function, which
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identifies the warehouse that will next drift into the ADR’s current plane, calculates

the drift time using J2 perturbation rates, performs a Hohmann transfer to parking

orbit altitude, waits for RAAN alignment, and initiates the docking sequence with

the warehouse.

Satellites with RPO (Rendezvous and Proximity Operations) capability can au-

tonomously maneuver to the vicinity of the orbital warehouse but still require an

ADR vehicle for final collection and last-mile delivery. This approach eliminates the

need for expensive hybrid propulsion systems on each satellite, significantly reducing

per-unit RPO upgrade costs while maintaining operational flexibility.

For these local ADR collection operations, the simulation makes three key assump-

tions. First, it assumes that the ADR vehicle can collect 3 RPO-capable satellites

within a 7-day period. This assumption is justified because RPO-capable satellites

can autonomously approach the warehouse and maintain station-keeping in its vicin-

ity, allowing the ADR vehicle to efficiently service multiple spacecraft during a single

sortie. The 7-day window accounts for coordination, approach sequencing, and safe

capture operations for three satellites, reflecting realistic operational tempo without

overtaxing the ADR vehicle. Second, the simulation assumes the ADR operational

cost for RPO-capable satellites is 50% of the cost for non-cooperative satellite oper-

ations. This reduction is justified because RPO-capable satellites eliminate the most

challenging and fuel-intensive phases of ADR: target approach, matching of tumbling

or uncontrolled trajectories, and long-distance rendezvous. By arriving cooperatively

at the warehouse vicinity, these satellites reduce ADR complexity to simple station-

keeping and final capture maneuvers. Third, the simulation assumes that one local

collection trip expends 20% of the ADR vehicle’s fuel capacity. This is justified be-

cause local collection operations involve minimal delta-V requirements compared to

non-cooperative ADR missions, with the ADR vehicle only performing short-range

maneuvers, attitude adjustments, and controlled returns to the warehouse rather than
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extensive pursuit trajectories. While these assumptions are simplified for simulation

purposes, they reasonably capture the operational advantages of cooperative RPO: re-

duced mission complexity, lower fuel requirements, and improved collection efficiency

compared to traditional non-cooperative ADR operations.

Warehouse Class

Warehouses occupy a parking orbit altitude (lower than customer altitude) with

the same inclination as the satellite constellation. They store spare satellites and

receive collected satellites from ADR vehicles. Using the optimized capacity from

Jakob et al.’s multi-echelon sparing paper, this framework assumes that warehouses

can store 35 total satellites [192]. Each warehouse tracks its plane location by moni-

toring RAAN evolution due to J2 perturbation. Container management involves sep-

arate tracking of spare satellite count and collected, refurbished, and obsolete satellite

count. Physical properties include dry mass, payload mass, fuel mass, and maximum

capacity. Service capabilities are indicated by boolean flags for refueling equipment

and repair equipment availability. ADR fleet management tracks which ADR vehicles

are currently attached. Resupply event tracking monitors critical spare level and fuel

level thresholds that trigger resupply requests, with requested warehouse upgrades

delivered along with resupply missions.

The drift and replenish process is managed through the drift and replenish

process function, which continuously propagates the warehouse’s RAAN. When the

warehouse’s RAAN enters a new plane’s RAAN range (within tolerance), the process

checks the current spare satellite count in that plane and compares it against the tar-

get spare level for the plane. If a deficit exists, the process initiates release new sat

for each needed spare. If the warehouse contains refurbished satellites with satisfac-

tory time to obsolescence and the plane has satellites retiring soon, the warehouse

releases new active satellites along with spare satellites. Satellites are released with

appropriate timing delays for orbital positioning, the warehouse spare inventory is
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decremented, and the active satellite count in the plane is incremented.

The satellite reception mechanism is implemented when an ADR vehicle arrives

at the warehouse through the receive satellite function, which manages satellite

transfer. The function first verifies that the warehouse has sufficient capacity (cur-

rent collected plus incoming must be less than or equal to maximum capacity). If

warehouse capacity is insufficient, the monitor collection process waits for spare

releases to create space, the ADR vehicle remains docked, and reception resumes.

The resupply process is managed through the warehouseResupply function, which

monitors spare levels continuously. When onboard spare count drops below the critical

threshold, the function triggers a resupply event, calculates required spare satellites,

fuel needs, and any queued upgrades, invokes the launcher class to select the ap-

propriate launch vehicle based on total payload mass, initiates a launch delay period

(processing time plus stochastic component), and upon launch completion replenishes

the warehouse with new spares, fuel, and upgrade modules as needed. If collected

satellites are marked for Earth return, the function then initiates a return mission

with associated transport costs using the same resupply launch vehicle.

Customer Class

The customer object represents the satellite constellation operator and manages

financial accounting and facilitates strategic decisions when certain events trigger.

Financial tracking is maintained through separate cost accumulators for different

categories including launches, upgrades, operations, lost revenue, collisions, and ser-

vicing. Revenue tracking captures the time-varying revenue stream based on opera-

tional satellite count and technology obsolescence factors. The infrastructure upgrade

state is monitored through boolean flags tracking satellite refuelability, repairability,

and upgrade timing. Policy fund management tracks subsidy funds for policy inter-

vention scenarios. Decision parameters store discount rate, service price multipliers,

obsolescence thresholds, and upgrade costs. The class regularly updates its counts of
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active, failed, retired, and spare satellites across all planes.

The decision process mechanism is implemented through customerDecisionProcess,

a SimPy process that waits for satellite decision events or warehouse delivery events.

When triggered, the process identifies which satellites have triggered events (status

changed to failed/retired or delivered to warehouse), invokes the satellite-level deci-

sion tree for each event satellite, executes the chosen action (queue for service, assign

for collection, or deorbit), updates financial accounting based on decision outcome,

and resets the decision event for the next trigger.

Launcher Class

The launcher manages all launch operations and vehicle selection. It maintains a

launch vehicle dictionary storing performance, capacity, and economic parameters for

seven launch vehicles, tracks scenario-specific time-varying cost trajectory, manages

launch timing including processing time, stochastic delay components, and stores the

uncertain multiplier for return that determines how expensive Earth return missions

are compared to the regular launch cost.

The vehicle selection mechanism is implemented through the best rocket for payload

function, which performs cost-optimal vehicle selection. Given the required payload

mass and current simulation time as inputs, the function filters available vehicles

where payload capacity is greater than or equal to required mass and operational

maturity time is less than or equal to current time. If no vehicles satisfy constraints,

the function returns a failure indicator. From valid vehicles, it selects the one with

minimum payload capacity (smallest vehicle that meets requirements) and returns

the vehicle name, maximum capacity, second stage mass, dry mass, and baseline cost

per kilogram. The actual mission cost is calculated based on the payload and the

given vehicle’s estimated launch cost ($/kg) at the start of the simulation multiplied

by the change in launch cost since then. This framework assumes that remaining

payload capacity in the selected launch vehicle, should it exist, is sold to another
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entity. The cost of this empty payload space if not accounted for.

Launch execution occurs when a resupply or deployment is needed. The process

calculates total payload (satellites plus fuel plus upgrades plus ADRs), invokes the

vehicle selection algorithm, samples launch delay from an exponential distribution,

calculates total launch time as processing plus delay, yields simulation for launch time

duration, and upon completion delivers payload to destination, updates emissions

tracking, and updates cost accounting.

Infrastructure Class

The Infrastructure class coordinates adaptive, fleet-level decision-making across

the Collection-as-a-Service (CAAS) system lifecycle, managing infrastructure invest-

ments in response to evolving operational conditions and policy incentives. Core

responsibilities include warehouse and satellite fleet management, which coordinates

warehouse upgrade decisions and the deployment of new warehouses, as well as satel-

lite fleet modernization, which oversees constellation-wide decisions to upgrade satel-

lites with refuelable/repairable/RPO capabilities.

The Infrastructure class implements concurrent decision-making processes that

evaluate infrastructure needs at different times in the simulation. Warehouse upgrade

evaluation occurs at monthly intervals and begins by identifying satellites requiring

service based on fleet composition, specifically refuelable or repairable satellites cur-

rently collected in warehouses or active in orbit. The process calculates aggregate

service revenue potential across the fleet, accounting for a practical number the ware-

house could service, and applies decision rules: if total refuelable satellite cost savings

are greater than or equal to refuel upgrade cost, a refuel capability upgrade is queued;

if total repairable satellite cost savings are greater than or equal to repair upgrade

cost, a repair capability upgrade is queued. Queued upgrades are delivered during

the next warehouse resupply mission.

The satellite fleet upgrade decision undergoes periodic Monte Carlo evaluation.
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The process tracks historical collection/refurbishment rates across the entire constel-

lation, projects future service demand over the remaining mission lifetime (typically 20

years), and runs 10,000 Monte Carlo trials with discounted cash flow analysis to com-

pare the cost of upgrading new satellites to be refuelable/repairable (including R&D

and per-satellite multipliers) against savings from refurbishment versus replacement

(accounting for policy rebates/subsidies). The decision is triggered if the projected

collection rate exceeds the break-even threshold. The upgrade percentage scales with

collection rate, with a minimum percentage of satellites upgraded set as a function of

warehouse number, and incorporates risk preferences through a parametric multiplier.

New warehouse addition undergoes periodic evaluation with a time constraint.

The process aggregates uncollected satellite service prices (revenue in waiting) and

calculates cost including base warehouse cost, launch costs, learning curve effects

(cost multiplier decreases with each warehouse), and any required capability upgrades

(refuel/repair). The decision rule adds a warehouse if cost-savings-per-warehouse is

greater than or equal to total infrastructure cost. A time constraint prevents new

warehouses from being added after year 20, allowing sufficient operational time for

cost recovery. The process prevents concurrent warehouse additions through the

whADDinprogress flag. The function also prevents more warehouses than there are

orbital planes, setting a practical limit on warhouse infrastructure expansion.

Continuous monitoring processes include service price updates, which recalculate

satellite-specific service prices when satellites experience milestones and collision cost

calculation, which tracks exponentially increasing collision risk costs based on orbital

congestion that is assumed to increase with time.

The Infrastructure class accounts for fleet-level decision-making by balancing re-

active responses (based on current fleet state) with predictive analysis (Monte Carlo

projections), incorporating policy incentives directly into cost calculations (subsidies

reduce upgrade costs, rebates increase refurbishment value), using learning curves to
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model decreasing infrastructure costs with scale, coordinating timing constraints to

ensure infrastructure investments have sufficient operational lifetime for positive ROI,

and synchronizing satellite-fleet and warehouse-fleet perspectives through shared ser-

vice price signals. This multi-scale decision framework enables the simulation to cap-

ture emergent behaviors where infrastructure evolves adaptively in response to uncer-

tain satellite failures, changing technology costs, and policy interventions—mimicking

realistic stakeholder decision-making in nascent space servicing markets.

Emissions Class

The Emissions class tracks atmospheric pollution from space operations by mon-

itoring reentering mass that contribute to NOx emissions. The class distinguishes

between two primary reentry pathways that have different environmental impacts.

Core properties include massDown, representing reusable mass that reenters intact via

controlled descent, such as reusable second stages (measured in kg); deorbitedMass,

representing mass that burns up during atmospheric reentry, including satellites and

debris (measured in kg); and nonreusableSecondStageMass, representing mass of

expendable rocket stages that deorbit after use and burn up in the atmosphere (mea-

sured in kg). These properties are updated every time a satellite deorbits or a launch

vehicle reenters the atmosphere.

SimPy Event Management and Process Orchestration

SimPy orchestrates the discrete event simulation through event-driven processes,

illustrated in the comprehensive flow digram in Figure 3.19. The simulation manages

multiple concurrent process functions that yield control to the SimPy environment

and wait for specific events or timeouts. Primary event types include satellite failure

events, which are pre-scheduled at initialization based on exponentially distributed

failure times and trigger status change and decision tree invocation; satellite retire-

ment events, which are triggered after satellite completes design life and initiate end-

of-life decision process; warehouse resupply triggers, which are activated when spare
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count drops below critical threshold and initiate launch request; warehouse delivery

events, which are triggered when an ADR vehicle docks with a warehouse and initi-

ates satellite transfer; customer decision events, which are AnyOf events that trigger

when any satellite has a decision to make or when warehouse deliveries occur; infras-

tructure evaluation events, which provide periodic assessments (typically monthly)

for upgrade and expansion decisions; and parameter update events, which provide

scenario-specific updates to uncertain variables at predetermined intervals.

The simulation implements standard SimPy process function patterns. The infi-

nite loop with event waiting pattern is used for warehouse drift, infrastructure evalu-

ation, and parameter updates. The AnyOf event pattern allows the customer decision

process to respond to multiple potential event sources efficiently. The sequential pro-

cess with yields pattern is used for ADR collection missions and launch operations.

Throughout execution, the simulation continuously records time-stamped finan-

cial transactions, operational event logs (collections, services, launches), system state

snapshots at key intervals, decision outcomes and associated NPVs, infrastructure

deployment events and timing, policy intervention applications (subsidies, refunds,

fines), and sustainability metrics (number of satellite collections/refurbishments, num-

ber of deorbits, and cumulative deorbited mass).

Data is collected in memory during simulation execution and written to structured

output files (Excel or CSV) at completion for post-processing analysis. Figure 3.19

shows the entire logical flow diagram for the Discrete Event Simulation.
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Figure 3.19: Methodology Logical Flow Diagram
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3.6.2 Formulation Question 4.2: Cost Modeling

Formulation Question 4.2
How to model costs?

This work combines cost models and estimates from several sources. A summary

of all simulation costs is included in Table 3.4. Specific cost assumptions and their

justifications are available in Table 3.5.

Table 3.4: Summary of Simulation Costs

Cost Type Details

Initial cost Includes the cost of existing satellites, warehouses,

and ADR vehicles at the start of the simulation,

including any applicable upgrades.

Cost to directly replace failed

satellites

Triggered when no in-plane spare or nearby ware-

house is available. Includes cost of the satellite, its

fuel, and a single-satellite launch.

Cost to launch ADR mission

directly from Earth

Applied when no ADR vehicle is available nearby.

Includes ADR hardware, launch cost, and operation

cost.

Cost to replace planes of

satellites

Scheduled batch replacement of aging planes. In-

cludes costs of satellites, fuel, and launch for all

replacements.

Cost to resupply warehouses Includes spare satellites, satellite and warehouse

fuel, new ADRs (if ordered), upgrades, and return

cost for old satellites if sent to Earth.
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Cost Type Details

Cost to service satellites on

Earth

Incurred when satellites return and are refurbished

or repaired based on NPV evaluation. Includes ser-

vicing and recommissioning costs.

Cost of lost revenue due to ob-

solescence or lost coverage

Revenue loss due to satellites being down or obso-

lete. Obsolescence reduces utility; gaps in coverage

incur cost based on revenue loss per day.

Cost associated with collision

avoidance or events

Incurred when collision avoidance maneuvers or ac-

tual collisions occur, as defined by an exponential

cost function that scales with the scenario’s tem-

poral progression (reflecting increasing orbital con-

gestion), the population of non-maneuverable satel-

lites, and their orbital residence time

Cost of ADR operations in

space

Cost to operate ADR missions within space (e.g.,

satellite retrieval and towing to warehouse).

Cost to upgrade satellites Applied when customers invest in satellite up-

grades, such as refuelability or repairability.

Cost to upgrade warehouses Applied when a warehouse is upgraded (e.g., to in-

clude fuel or repair capabilities).

Cost to service satellites in

space

Incurred when satellites are repaired or refueled on-

orbit using warehouse capabilities.

Cost to deorbit satellites Applied when a satellite is actively deorbited in-

stead of refurbished or reused.

Cost of adding new ware-

houses

Applied when customers expand capacity by de-

ploying new orbital warehouse facilities.

177



Table 3.5: Initial Cost Assumptions (Year: 2025)

Variable Name Value Justification

Satellite Unit Cost $900,000 Based on estimated OneWeb satellite cost [191]

Earth Refurbishment (General) $200,000 Includes labor, testing, parts and upgrades, and fa-

cilities. It’s assumed that refurbishing is roughly 20-

40% of manufacturing a new satellite, based on the

economics of refurbishing reusable rockets, which is

65% cheaper than launching new [221]

In-space/Earth Repair (Repairable

Satellite Failure)

$450,000 More effort than refurbishment, roughly half the cost

of a new satellite

In-space/Earth Repair (Obsolescence,

Repairable)

$550,000 More expensive than repair due to payload upgrade

and related testing

Earth Repair (Obsolescence, Non-

repairable)

$855,000 Requires more extensive labor to swap a payload in a

satellite not meant to be repaired, roughly the same

cost as a new satellite

Continued on next page
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Table 3.5 – continued from previous page

Variable Name Value Justification

Satellite Refuel Upgrade, R&D $5,000,000 Redesign for mechanical and fluid interface, propul-

sion system adjustments, electrical & software inte-

gration, testing and certification

Satellite Repair Upgrade, R&D $9,000,000 Design modularization, standardized interfaces, on-

board failure monitoring, testing, qualification

Warehouse Refuel Upgrade $8,000,000 Xenon storage and pressure management, refuel-

ing system with specialized docking, precision con-

trol systems, diagnostic monitoring, coordination be-

tween depot and satellite, training, certification, and

testing

Warehouse Maintenance $15,000,000 Diagnostic systems and related sensors, robotic ca-

pability and tooling, spare parts, power systems for

satellite battery test & recharge, specialized software,

training, and testing

Continued on next page
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Table 3.5 – continued from previous page

Variable Name Value Justification

ADR Vehicle Cost $48,000,000 Based on $16 million (USD) Astroscale contract that

covers about 1/3 of vehicle cost [101]

ADR Operation $250,000 Includes the cost for ground support, GNC, RPOD,

system checks, mission operations

ADR Operation for RPO satellite $83,250 Includes the cost for ground support, GNC, RPOD,

system checks, mission operations. Less than classic

ADR oeprations because RPO satellites are upgraded

to be cooperative and maneuver duration is shorter

In-Space Refueling Operation $250,000 Includes the cost for ground support, controls, robotic

operation, system checks, depreciation of hardware,

labor, mission operations

Continued on next page
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Table 3.5 – continued from previous page

Variable Name Value Justification

Warehouse Cost $100,000,000 Based on analogous servicing spacecraft budgets,

such as DARPA RSGS [222] and MEV-2 [223], which

have more capability than initial spare warehouse

configuration. Can also be compared to the scale of

large GEO satellites, such as Intelsat 10-02 [223], fac-

toring out launch cost to GEO

Deorbit Cost (From constellation alti-

tude)

initially

$100,000; set to

1/9 of spacecraft

cost and varies

proportionally

Based on NASA estimate of additional cost for

medium satellite’s extra propellant to immediately

deorbit from 800 km ranges (between $85,000 and

$425,000 [224]

Satellite to Warehouse RPO Cost 1/2 of present

deorbit cost

conservative estimate based on estimated deorbit cost

[224]

Deorbit Cost (From parking orbit alti-

tude)

1/2 of present

deorbit cost

conservative estimate based on estimated deorbit cost

[224]
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3.6.3 Formulation Question 4.3: Trajectory Modeling

Formulation Question 4.3
How to model trajectory?

High Thrust Maneuvering

This work assumes that all orbits are circular and all ADR orbital maneuvering can

be represented with Hohmann transfers. The VHohmann for an in-plane maneuver is

provided in the following equations [225]:

atransfer = r0 + r1

2 (3.22)

v0 =
√

µ

r0
(3.23)

vtransfer,0 =
√

µ
( 2

r0
− 1

atransfer

)
(3.24)

v1 =
√

µ

r1
(3.25)

vtransfer,1 =
√

µ
( 2

r1
− 1

atransfer

)
(3.26)

∆vHohmann = |vtransfer,0 − v0| + |v1 − vtransfer,1| (3.27)

In these Hohmann transfer equations, the variables are: atransfer for the semi-major

axis of the transfer orbit, r0 for the initial orbital radius, r1 for the final orbital radius,

v0 for the velocity in the initial circular orbit, vtransfer,0 for the velocity at periapsis

of the transfer orbit, v1 for the velocity in the final circular orbit, vtransfer,1 for the
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velocity at apoapsis of the transfer orbit, µ for the gravitational parameter (GM),

and ∆vHohmann for the total delta-v required for the Hohmann transfer.Accounting

for the ∆V of each maneuver, the necessary mass can be determined using the rocket

equation.

masswet = massdrye
∆V
gIsp (3.28)

Low Thrust Maneuvering

This simulation incorporates collaborative maneuvering capabilities within its CONOPs,

where satellites equipped with electric propulsion systems can conduct RPO with or-

bital warehouses while specialized ADR vehicles collect them for subsequent, last-mile

rendezvous and docking operations.

Given the computational complexity of precisely modeling low-thrust orbital trans-

fers, this framework employs a conservative analytical approach. Edelbaum’s ana-

lytical approximation [226] provides a method for computing delta-V for combined

altitude and plane changes between circular LEO orbits:

∆v =
√

v2
0 + v2

1 − 2v0v1 cos
(

π

2 θ
)

(3.29)

where v0 and v1 are the circular orbital velocities at the initial and target altitudes

(v =
√

µ/r), and θ represents the plane change angle.

However, to ensure satellites retain sufficient propellant reserves for deorbit opera-

tions in the event that warehouses are at capacity or RPO operations are unsuccessful,

this framework adopts a conservative operational constraint: satellites do not actively

change RAAN through propulsive maneuvers. Instead, warehouses are positioned at

the same inclination as the origin constellation, and satellites rely exclusively on nat-

ural J2 precession to drift to the required RAAN. This eliminates the propulsive plane

change component (θ = 0), reducing the delta-V to pure altitude change:
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∆vtotal = |v1 − v0| (3.30)

Under this constraint, the total transfer time is determined by RAAN drift time

from natural J2 precession for circular orbits [225]:

n =
√

µ

a3

Ω̇ = −3
2

nJ2R
2
E

a2 cos i

tRAAN = |∆Ω|
|Ω̇|

(3.31)

The framework uses ttransfer = tRAAN to capture the reality that satellites must

wait for favorable orbital geometry. This conservative approach ensures that ware-

house transfers remain propellant-efficient. Maneuvers exceeding 5 years are deemed

impractical, and satellites that would take that long are directed to deorbit instead.

This implementation reflects a deliberate design choice: by limiting propulsive ma-

neuvers to altitude changes only and leveraging natural orbital mechanics for RAAN

phasing. This ensures satellites maintain adequate fuel reserves to independently de-

orbit if they arrive at a warehouse that is at capacity or if RPOD operations fail,

preserving responsible end-of-life disposal capabilities as a fallback option.

3.6.4 Formulation Question 4.4: Emissions Modeling

Formulation Question 4.4
How to model emissions?

There are a number of emissions associated with launching and deorbiting satel-

lites. For the purposes of this thesis, however, we will focus on NOx, since it has a

sizable impact on ozone compared to other emissions [36] and has a rule-of-thumb

emission estimate that is a function of spacecraft mass and reentry condition. The

framework will calculate the kgs of NOx produced for each infrastructure simulation
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so the user can compare the effectiveness of CAAS in reducing NOx emission. This

will include NOx produced by the rocket launches necessary to resupply the customer

constellations and CAAS infrastructure elements.

In 1976, Park et al. approximated reentering spacecraft as flat plates and deter-

mined that they produce about 4.5-9% of its mass in nitric oxide. This approximation

assumes that air flow in the shock layer is in chemical equilibrium. This rule of thumb

was improved in the paper, “Equivalent-cone calculation of nitric oxide production

rate during space shuttle reentry” [38]. These updated calculations remove the chem-

ical equilibrium assumption and use plan area to approximate the NOx mass flow

rate produced from a returning space shuttle, finding NOx production to be 2.6

times greater than the Park estimation. In their environmental assessment, Ryan et

al. estimate that returning reusable components produce NOx emissions equivalent

to 17.5% of its mass [36]. For spacecraft that completely vaporize, including reen-

tering debris and rocket stages that fall from 50km or higher, they estimate that it

contributes 100% of its mass as NOx emissions [36]. These estimates are consistent

with the Larson et al. study [37] and NASA Space Shuttle reentry estimates [38].

The proportional relationship for total NOx emissions used in this framework is:

NOx emissions ∝ 0.175 · mReturned to Earth + mburned in the atmosphere (3.32)

To estimate the mass of returning launch vehicles, the emission model uses the Tsi-

olkovsky rocket equation for stage separation and second-stage performance and uses

publicly available information about existing or developing launch vehicles [227],[228],[229],

[230],[231]. Where information is not publicly available, the model uses approxima-

tions, available in Appendix A in Table A.2. The second-stage velocity increment

is:
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∆V2 = Isp2 · g0 · ln
(

Msep

M2ndstagedry + Mpayload

)
(3.33)

The separation mass (Msep) is estimated as:

Msep = Mlaunch · exp
(

− Vsep

Isp1 · g0

)
(3.34)

And the dry mass of the second stage (M2ndstagedry), which contributes to reen-

try emissions, is:

M2ndstagedry = Msep · exp
(

− ∆V2

Isp2 · g0

)
− Mpayload (3.35)

3.6.5 Formulation Question 4.5: Policy Modeling

Formulation Question 4.5
How to model and incorporate the effect of various policy schemes?

While numerous policies could influence the OOS market in LEO, this research

examines eight distinct policy approaches, including five single-mechanism policies

and three hybrid combinations. The selection draws from established environmental

economics theory and builds upon policy recommendations specifically developed for

space sustainability challenges. Each scheme addresses different market mechanisms

while targeting the common goal of promoting economically viable on-orbit servicing

infrastructure that can reduce atmospheric emissions from satellite operations.

The policy selection process recognizes that government intervention fundamen-

tally impacts the costs and benefits of options available to constellation operators.

As noted in space sustainability research, effective policy should help “tip the scales”

on viable business cases where needed, supporting improvements in constellation sus-

tainability while limiting penalties on satellite operators and costs to taxpayers. The

selected schemes represent distinct approaches to internalizing environmental costs
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and creating economic incentives for sustainable space operations.

Policy Scheme 1: OUF/Refund

Orbital Use Fees form the foundation for two policy schemes, reflecting their promi-

nence in space sustainability literature. Rao and colleagues demonstrated that opti-

mal orbital use fees could significantly increase space industry value while effectively

mitigating collision risks, since satellite operators do not fully account for collision

costs they impose on one another. Their recommended fee of $14,900 per satellite,

escalating to $235,000 by 2040, provides empirical grounding for the OUF parameters

tested in this research [153].

The first OUF policy scheme implements the deposit/refund concept proposed

by Macauley [152]. This approach directly incentivizes satellite collection and re-

furbishment by creating immediate financial returns for responsible end-of-life man-

agement. The accumulated fee structure ensures that longer operational lifetimes

generate larger refund values, encouraging both extended satellite life and eventual

responsible disposal.

Policy Scheme 2: OUF/Subsidy

This policy follows the Roy and colleagues approach of using orbital use fee proceeds

to subsidize on-orbit recycling infrastructure [154]. This scheme addresses the clas-

sic collective action problem where individual operators lack sufficient incentive to

invest in infrastructure that benefits the environment. By pooling OUF revenues to

subsidize warehouse infrastructure or satellite upgrades, this approach can overcome

initial capital barriers that prevent economically efficient servicing infrastructure de-

velopment.
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Policy Scheme 3: Contingent Fine/Subsidy Framework

Policy Scheme 3 targets failed satellites specifically. The fine structure creates direct

accountability for satellite failures while the refund mechanism maintains incentives

for responsible collection. This dual approach ensures that operators who contribute

to the pollution problem bear the costs while those who participate in remediation

receive financial compensation. Proceeds from the fines form a subsidy fund that can

provide rebates for refurbishments and/or subsidize elements of the infrastructure or

satellite upgrades.

The contingent fine approach addresses concerns raised about purely ex-ante poli-

cies that rely on complex forecasting methods. By implementing penalties based

on actual satellite failures rather than predicted risks, this scheme avoids the con-

servative assumptions and methodological challenges that industry stakeholders like

SpaceX have criticized in proposed aggregate collision probability metrics.

Policy Scheme 4: Insurance Market Integration

Mandatory insurance requirements build upon established space law frameworks while

addressing current insurance market failures. Research from the Aerospace Corpora-

tion suggests that on-orbit servicing and orbital insurance could develop a “unique,

symbiotic relationship” since servicing availability would reduce both the number and

severity of insurance claims [155].

This policy scheme addresses multiple market failures simultaneously. The manda-

tory insurance requirement creates universal coverage that internalizes satellite failure

risks, while the premium elimination for serviced satellites provides direct economic

incentives for operators to utilize available servicing infrastructure. Insurance compa-

nies would naturally become advocates for servicing capabilities and standardization,

creating market-driven pressure for sustainable operations.
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Policy Scheme 5: Progressive Revenue Generation

Policy Scheme 5 (Subsidy/Taxes) implements a progressive taxation approach that

scales with constellation operator success. This time-progressive structure acknowl-

edges that successful operators have greater capacity to contribute to industry-wide

sustainability infrastructure while ensuring that rapidly growing companies main-

tain responsibility for their increasing environmental footprint. The approach follows

Adilov and colleagues’ recommendation for Pigouvian taxation that funds debris mit-

igation, adapted specifically for atmospheric emissions concerns [151].

The profit-based taxation mechanism avoids penalizing operators during vulner-

able phases while ensuring that established, profitable operations contribute propor-

tionally to sustainability infrastructure. This approach addresses concerns about

international competitiveness and “forum shopping” by scaling obligations with fi-

nancial success rather than imposing uniform burdens regardless of operator circum-

stances. Similar to other policy schemes, the taxes form the subsidy fund.

Policy Scheme 6: Direct Tax + Fine + Subsidy Hybrid

Policy Scheme 6 implements the progressive taxation of policy scheme 5 along with

infrastructure subsidies and the fine mechanism of policy scheme 3, creating multiple

avenues to build the subsidy fund and encourage sustainable operations. The dual

funding mechanism provides both immediate fine-based revenues and growth-scaled

tax contributions, creating robust financial support for servicing infrastructure while

distributing costs across operational penalties and profitable operations.

Policy Scheme 7: OUF + Fine + Subsidy Hybrid

Policy Scheme 7 combines the OUF-based revenue generation of Policy 2 with in-

frastructure subsidies and the fine mechanism of policy scheme 3. Similar to policy

scheme 6, this hybrid scheme leverages multiple revenue streams to maximize subsidy
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funds available for infrastructure development. This approach tests whether combin-

ing complementary policy mechanisms yields synergistic benefits or creates excessive

regulatory burden.

Policy Scheme 8: Insurance/Subsidy Integration

Policy Scheme 8 mimics the mechanics of insurance premiums, but orchestrated

through a government fund that can provide infrastructure subsidies, creating a hy-

brid between risk-based pricing (Policy 4) and subsidy fund development. Unlike

Policy 4 where premium waivers provide the only incentive for servicing, Policy 8

uses the proceeds to directly subsidize warehouse capabilities and satellite upgrades

and reward refurbishments.

Government Class Implementation

The theGovernmentClass orchestrates policy implementation through conditional

activation of process functions based on the selected policy scheme. This class tracks

government financial flows and triggers policy mechanisms throughout the simulation

lifecycle. Note that at the end of the 30-year simulations, for all policies but policy

4, the government subsidy fund is subtracted from the constellation operator’s total

cost in order to compare the policy’s impact on total system costs.

Core Properties:

• funds: Government-held subsidy pool available for infrastructure support

• annualOUF: Per-satellite orbital use fee (Policies 1, 2, 7)

• failurePenalty: Fine levied on failed satellites (Policy 3, 6, 7)

• annual premium: Insurance premium percentage of satellite value (Policies

4, 8)
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• tax rate: tax percentage parameter (Policies 5, 6)

• refund condition: Determines refund trigger (1 = collection, 2 = refurbish-

ment) (Policy 1)

• rebate for refurbishment: Provides a $250,000 rebate for every refurbished

satellite (Policies 2, 3, 5, 6, 7, 8)

• initial subsidy: Subsidizes the initial cost delta between the CAAS configu-

ration and the baseline (Policies 2, 3, 5, 6, 7, 8)

Process Function Activation Logic:

The Government class conditionally activates specific process functions based on

the policy scheme:

• Policy 1: OUF collect() + refund()

• Policy 2: OUF collect() + subsidize()

• Policy 3: subsidize() (fine collection handled in customer failure events)

• Policy 4: apply premium()

• Policy 5: tax() + subsidize()

• Policy 6: tax() + subsidize() (fine collection handled in customer failure

events)

• Policy 7: OUF collect() + subsidize() (fine collection handled in customer

failure events)

• Policy 8: apply premium() + subsidize()

Key Process Functions:

191



OUF collect(): Executes annually, identifying active satellites that have not been

refurbished (neither on Earth nor in space). Adds the annual OUF charge to customer

costs and credits the same amount to the subsidy fund.

refund(): Event-driven process that triggers when satellites are collected (refund

condition = 1) or refurbished (refund condition = 2). Refunds the accumulated OUF

for the satellite’s operational age by reducing both customer costs and government

funds.

tax(): Executes annually with time-progressive tax rates calculated as:

tax percent = maxTax ×
(

t

30

)tax shape parameter
(3.36)

where t is mission time in years and tax shape parameter=1. The tax is applied to

operator profit and added to subsidy funds.

apply premium(): Identifies active satellites without refurbishment history and

charges annual premiums as a percentage of original satellite cost. Premium rev-

enues are not pooled for subsidies in Policy 4 (private insurance) but are in Policy 8

(government-managed subsidy fund).

subsidize(): Event-driven process triggered by warehouse additions, upgrades, or

satellite capability enhancements that enables infrastructure cost reductions if subsidy

funds are available.

This architectural separation between policy mechanisms enables clean compari-

son of single-instrument versus hybrid approaches while maintaining computational

efficiency through event-driven process activation.

3.6.6 Addressing Regulatory Gaps

These policy schemes directly address the regulatory gap identified by the Government

Accountability Office, which noted that insufficient research on atmospheric emissions
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prevents current policy development. While orbital congestion has received substan-

tial policy attention, atmospheric pollution from space operations remains largely

unregulated, falling outside both National Environmental Policy Act and Montreal

Protocol jurisdiction. The selected schemes recognize that atmospheric pollution

mitigation and orbital congestion management share fundamental characteristics, al-

lowing proven orbital policy concepts to inform atmospheric emissions strategies.

Each scheme provides mechanisms to reduce mass flux through the atmosphere by

incentivizing satellite life extension, refurbishment, and responsible collection, there-

fore addressing atmospheric emissions uncertainty through precautionary approaches

that provide economic benefits regardless of the ultimate impact of emissions on the

upper atmosphere.

The diversity of approaches tested, from market-based fees to insurance inte-

gration to progressive taxation, ensures comprehensive evaluation of different inter-

vention philosophies while maintaining focus on economically viable solutions that

support rather than hinder space industry growth. This selection enables identifica-

tion of scenario-dependent optimal policies that can establish sustainable servicing

infrastructures under varying economic and technological conditions.

3.6.7 Policy Impact Integration in Cost-Benefit Analysis

The discrete event simulation incorporates policy interventions through a compre-

hensive government class that systematically tracks financial flows and modifies con-

stellation operator decision logic. The simulation employs a conditional execution

structure where policy scheme selection determines which government processes are

activated.
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Direct Cost Impacts

The simulation tracks policy-induced costs through multiple channels that modify the

baseline constellation operator cost structure. Annual orbital use fees are calculated

as:

Annual OUF Cost = Nactive × OUFannual (3.37)

where Nactive represents the number of active satellites neither Earth nor space refur-

bished, and OUFannual is the policy-specified fee per satellite.

For mandatory insurance schemes, premiums are computed as:

Insurance Premium =
Nactive∑

i=1
Coriginal,i × rpremium (3.38)

where Coriginal,i is the original cost of satellite i and rpremium is the annual premium

rate.

Progressive taxation follows a time-dependent structure:

Tax Rate(t) = rmax ×
(

t

30

)α

(3.39)

where rmax is the maximum tax percentage, t is time in years, and α is the tax shape

parameter controlling the rate of increase.

Benefit Tracking and Rebates

The simulation incorporates policy benefits through rebate mechanisms tied to specific

satellite lifecycle events. For OUF refund schemes, rebates are calculated based on

satellite operational duration:

OUF Rebate = tage × OUFannual (3.40)

194



where tage is the satellite age in years at the time of collection or refurbishment.

3.6.8 Decision Logic Integration

Satellite Lifecycle Decisions

Policy impacts are embedded within the Net Present Value (NPV) calculations that

drive satellite servicing decisions. The simulation modifies the baseline NPV to in-

clude policy-specific cash flows.

For new satellite procurement, the total lifecycle cost incorporates policy expenses:

Ctotal = Csatellite + (OUFannual × Ldesign) + (Csatellite × rpremium × Ldesign) (3.41)

where Ldesign is the satellite design life.

Infrastructure Investment Decisions

Warehouse addition and upgrade decisions incorporate policy-generated subsidy funds.

The simulation evaluates infrastructure investments by comparing revenue potential

against costs modified by available subsidies:

Net Infrastructure Cost = Cinfrastructure − min(Fsubsidy, Cinfrastructure) (3.42)

where Fsubsidy represents the available government subsidy fund.

3.6.9 Fund Flow Dynamics

The government class maintains a dynamic subsidy fund (Fsubsidy) that accumulates

revenue from policy mechanisms and disburses funds for infrastructure support. Fund

accumulation follows policy-specific rules:
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dFsubsidy

dt
= ROUF + Rtax + Rfines + Rpremiums − Dsubsidies − Drebates (3.43)

where R terms represent revenue inflows and D terms represent disbursements.

3.7 Framework Integration and Experimentation

This chapter develops the necessary elements for an OOS flexibility framework that

screens flexible options, addressing gaps from preexisting OOS flexibility frameworks,

modeling the novel CAAS CONOPs and its elements, and leveraging concepts from

flexible infrastructure research. Following a series of formulation questions that ad-

dress the requirements for experimentation on hypotheses 1 through 3, this chapter

presents the logic for developing a flexibility framework that leverages a discrete

event simulation that includes decision rules for both the satellite constellation and

the servicing infrastructure. These decisions address experimental requirements 1-3,

presented in Figure 3.21. The following figure, Figure 3.22, illustrates the steps from

concept formation for result, indicating that tuning is necessary to improve decision

rule performance. Figure 3.20 illustrates how to use the framework to conduct the

experiments, tuning, and sensitivity tests. Each experiment section in the following

chapter highlight additions to this process necessary to perform the particular set of

experiments.

Overarching Formulation Decision
A multi-option flexibility framework that pairs space logistics modeling via DES

with decision rules and Monte Carlo simulations that sample multi-domain

uncertainty will allow the user to draw conclusions on the relative performance

of flexible option sets for LEO-based OOS
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Input File: One column per simulation 

DOE of 
Configuration 

Variables for N 
combinations

Parameters for J 
Uncertain 

Distributions to 
produce M 
scenarios

DOE for L 
Uncertain 

Estimates to 
produce M 
scenarios

Output File

If conducting sensitivity testing: run each 
configuration/scenario for every sensitivity test

Establish Decision Rules

Apply decision 
rule multipliers

If tuning decision rule 
multipliers, run simulation under 

a consistent set of 
configurations/uncertain 

scenarios for trial-and-error 
method

Run Simulation for K sensitivity tests for N configuration 
combinations for  M uncertain scenarios

Produce VARG results, run rank order convergence analysis, 
regression-based variance analysis, and t-tests to identify 
statistically significant  differences between configuration 

performance across metrics

Product Process Function Input

If comparing infrastructure and/or policy configurations, 
provide a DOE of configuration combinations 

Apply effects of 
sensitivity test

Legend:
• DOE: Design of Experiments
• VARG: Value-at-Risk/Gain
• K: Number of sensitivity tests
• N: Number of configuration 

combinations
• M: Number of uncertain 

scenarios
• J: Number of uncertain 

distributions/parameters
• L: Number of uncertain 

estimates

May impact 
uncertain variables 
or mechanisms 
within the logistics

Figure 3.20: Use of the JAWA Framework
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Hypothesis 1: CAAS Hypothesis 2: Flexibility Hypothesis 3: Policy

No existing flexibility framework for LEO-based OOS that includes multi-domain uncertainty, interactive decision modeling, impact of 
policy, and the combinatorial effects of both classic OOS options and novel concepts (cooperative maneuvering, collection hubs, 

temporary abandonment) that would allow screening for economically and environmentally feasible strategies and policies.

Overall Framework Gap

A multi-option flexibility framework that pairs space logistics modeling with interactive, conditional decision rules and Monte Carlo 
simulations that sample multi-domain uncertainty will allow the user to draw conclusions on the relative performance of flexible

option sets and policies for LEO-based OOS

Overarching Formulation Decision

Formulation Question 1: Flexibility Framework Modeling

Baseline Uncertainty Modeling Concept Generation Design Space Exploration

Mid-fidelity integrated systems models with embedded decision rules are appropriate for the scheduling/operations of the CAAS OOS 
infrastructures with various sources of uncertainty

Formulation Decision 1

Formulation Decision 2: Discrete 
Event Simulation

Formulation Decision 3: Conditional 
Decision Rules

Formulation Question 2: Simulation Method Formulation Question 3: Decision Modeling

Formulation Question 4: DES 
Component Modeling

Supporting Condition: CAAS 
outperforms both overpopulation and 

multi-echelon sparing baseline in 
terms of emissions for comparable or 

better cost

Supporting Condition: Framework 
identifies which flexible enablers and 

strategies consistently outperform the 
baseline 

Supporting Condition: The framework 
identifies a policy scheme that 
improves sustainability metrics 

compared to laissez-faire 
configurations

Experimental Requirement 2: 
Requires flexibility framework 

that compares baseline, 
inflexible designs with designs 

that enable flexibility

Experimental Requirement 3: 
Requires modeling cost/benefits of 

various policy schemes and 
incorporating their effect on 

owner/operator decision-making

Experimental Requirement 1: Requires 
model that provides rank-order comparison 

between configurations in terms of cost 
and emissions and includes the impact of 

multiple sources of uncertainty 

Requires mid-fidelity model with uncertainty 
characterization

Requires decision-making model that reacts to several 
sources of uncertainty and evolving infrastructure

Figure 3.21: Experimentation Logic Flow Diagram
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• Brainstorm options
• Down-select 

promising flexible 
mechanisms and 
strategies

• Identify sources of
uncertainty

• Identify policy
options

Concept Formation

• Model design elements
• Model policies
• Characterize sources of 

uncertainty
• Establish assumptions for

deterministic simulation
settings

• Determine configuration
combinations, N

• Design decision rules

Modeling

• Run Monte Carlo 
simulations for N 
configurations in a 
set through M 
scenarios

Simulation

• Determine necessary number of
replications, M

• Assess significance of configuration 
variables, uncertain variables and their 
interactions

• Create VARG plots for outputs of interest
• Measure performance and significance of

decision rules
• Conduct sensitivity testing on

deterministic simulation settings

Analysis

Revisit decision rules and assumptions as necessary

• Identify  top 
performing design 
configurations and 
strategies that
reduce emissions 
without significant 
cost increases 
compared to the 0-
warehouse baseline

Result

Figure 3.22: Experimental Method Diagram
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CHAPTER 4

SCREENING FLEXIBLE OPTIONS & EXPERIMENTATION

Figure 4.1: The Bavaria of the Semmering Railway Contest [232]

”They built these tracks even before there was a train in existence that could

make the trip. They built it because they knew some day, the train would come.”

- Under the Tuscan Sun

4.1 Experimentation Overview

The previous chapter developed the flexible option screening methodology by consid-

ering previous frameworks and determining which methodologies and tools best apply

to the needs of OOS operations in LEO. The first hypothesis focuses on the collection-

as-a-service concept without incremental deployment flexibility, determining which

initial configuration performs best in terms of NOx emissions and cost, compared to

the 0-warehouse baseline that relies exclusively on overpopulation for spare satellites

and ADR vehicles launched from Earth to collect failed satellites. Figure 4.2 provides
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a breakdown of all hypotheses and their experimental supporting conditions. If a con-

figuration featuring CAAS outperforms the 0-warehouse baseline in the sustainability

metrics for similar or better total cost, hypothesis 1 is substantiated and the resulting

architecture forms the CAAS-baseline that is used for comparison in hypothesis 2. To

determine which flexible options, or set of options, improves system performance in

terms of cost and/or emissions, Experiment 2 compares flexible CAAS cases with both

the inflexible CAAS-baseline and 0-warehouse baseline. To determine the sensitivity

of the ranked configurations, the experiment includes a series of sensitivity studies on

key uncertain variables and deterministic assumptions. Hypothesis 2 is substantiated

if it identifies which set of flexible strategies and mechanisms bring the best economic

and sustainability value. Lastly, Experiment 3 applies the effect of various policies to

the costs and benefits and compares the results to those of the flexible, lasseiz-faire

result from Experiment 2. The methodology incorporates government interventions

through a parametric modeling approach, where regulatory mechanisms are repre-

sented as time-varying incentive and penalty structures. Eight distinct policy archi-

tectures are examined: fee-based systems with performance-linked reimbursements,

conditional penalty frameworks, mandatory insurance requirements, and tax-based

subsidy mechanisms for sustainable technology adoption. The evaluation framework

employs weighted scoring methodologies to balance competing objectives across cost

efficiency, environmental impact, and operational sustainability metrics. Performance

indicators include total system costs, satellite collection and refurbishment rates, and

atmospheric emission reductions. Experiment 3 is supported if it can identify con-

figurations that improve sustainability metrics with manageable costs for both gov-

ernment and constellation operator over the 30-year scenario timeline. The results

of experiments 1-3 are visualized and compared using Value at Risk/Value at Gain

(VARG) plots for total cost, where value-at-risk represents the 95th percentile and

value-at-gain represents the 5th percentile. To measure the statistical significance
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of each configuration variable, this framework applies a polynomial regression-based

variance decomposition approach with Analysis of Variance (ANOVA)-style F-tests

to the VARG results. Configurations are compared by rank order across the various

metrics. To determine the number of scenarios needed to determine if rank is stable,

this thesis uses ranking convergence analysis that considers rolling statistics over slid-

ing windows, monitoring how estimates evolve with additional scenarios. Coefficient

of variation provides a normalized measure of rank variability while 95% confidence

intervals provide insight into the typical range of a configuration’s rank. These mea-

surements help determine if rank is confidently stable for a given number of scenarios.

Additionally, these experiments also directly compare the 5th percentiles, averages,

and 95th percentiles of top-performing configurations to those of the baseline config-

urations. Using two-sample t-tests, the experiments determine if the p-value for the

percent difference satisfies the standard α = 0.05 threshold, if the 95% confidence

interval includes zero, and whether the margin of error is smaller than the observed

difference. In summary, rank order provides insight into which configurations per-

form best while VARG comparison informs the degree to which these configurations

perform better.

Multi-echelon sparing with collection 
warehouses that strategically retain 
salvageable assets for future reuse, 
refueling, or repair, while facilitating 
ADR missions and the controlled de-
orbiting or Earth-return of old 
satellites via reusable second stages 
provide better or comparable 
economic feasibility and 
sustainability metrics compared to 
infrastructures that rely on the 
overpopulation sparing strategy and 
ADR missions launched directly from 
Earth

Hypothesis 1: CAAS

If the flexibility framework models 
CAAS system evolution, captures 
uncertainty, and models incremental 
decision-making, it will identify which 
flexible enablers and strategies for 
both servicing infrastructure and 
satellite constellation provide robust 
improvements for the economic 
feasibility and sustainability metrics 
of the CAAS infrastructure compared 
to infrastructures that only rely on the 
overpopulation sparing strategy and 
ADR missions launched directly from 
Earth

Hypothesis 2: Flexibility

If the flexibility framework models 
government intervention as 
parametric, time-dependent 
“rewards” and “penalties”, then there 
exist scenario-dependent 
reward/penalty schemes that best 
establish economically feasible 
infrastructures that yield better 
sustainability metrics than laissez-
faire infrastructures developed with 
the same incremental deployment 
framework

Hypothesis 3: Policy

Supporting Condition: CAAS 
outperforms both overpopulation and 

multi-echelon sparing baseline in 
terms of emissions for comparable or 

better cost

Supporting Condition: Framework 
identifies which flexible enablers and 

strategies consistently outperform the 
baseline 

Supporting Condition: The framework 
identifies a policy scheme that 
improves sustainability metrics 

compared to laissez-faire 
configurations

Figure 4.2: Supporting Conditions for Hypotheses
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4.1.1 Use Case

Borrowing the use case from Jakob et. al.’s multi-echelon sparing paper but accounting

for recent updates, this thesis uses OneWeb as the example customer constellation.

The use case resembles a portion of the constellation as it is today, with a constellation

altitude of 1200 km, an inclination of 86.4 degrees, 18 planes with 36 satellites each,

and an initial satellite failure rate of 1 satellite per year. CAAS infrastructures

will start with at least 1 spare warehouse located at the optimal altitude, 796km,

identified by Jakob et al. [14]. All configurations feature 2 in-plane spare satellites

and 5 initial spare satellites per warehouse. If the servicing infrastructure grows to

over 3 warehouses, each warehouse houses at least 2 spare satellites; if the servicing

infrastructure grows to over 8 warehouses, this number is further reduced to 1 spare

satellite. Note that the results for the following experiments are based on this use case

and its assumptions. This use case provides a basis for demonstrating the proposed

flexibility framework and its methodology, but the framework could be expanded in

future work to consider other satellite constellations of varying parameters.

4.1.2 Testing for Statistical Significance

Individual Configuration Variables

The test for statistical significance methodology serves to identify which configuration

variables have the most significant impact on key performance metrics in the simu-

lation framework. This statistical approach helps the user understand the relative

importance of different design decisions across complex scenarios involving multiple

categorical configuration parameters like warehouse configurations, satellite configu-

rations, and policy schemes.

The analysis begins by transforming categorical configuration variables into nu-

merical form using one-hot encoding, which creates binary indicator variables for each
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category level while avoiding multicollinearity issues. To capture complex relation-

ships and interaction effects between different configuration choices, the methodology

expands these encoded features using polynomial terms up to degree 3. This expan-

sion includes individual configuration effects, pairwise interactions between configu-

rations, and three-way interactions.

For each unique configuration combination, the system computes three key risk-

adjusted performance metrics for total cost: average performance across simulation

runs, Value at Risk (VaR) representing the 95th percentile of outcomes, and Value at

Gain (VAG) representing the 5th percentile. These metrics provide a comprehensive

view of both typical performance and extreme outcomes under uncertainty.

The analysis uses F-regression to assess how well each polynomial feature ex-

plains variance in the VARG metrics. The F-statistic measures the ratio of explained

variance to unexplained variance for each feature, while p-values indicate statistical

significance. The implementation handles various types of categorical variables, from

binary choices like depot presence to multi-level variables like policy schemes. This

process enables the user to prioritize configuration decisions by focusing on variables

with the highest explanatory power, understand risk trade-offs by comparing variable

importance across different metrics, identify synergistic relationships between con-

figuration choices, and validate that simulation designs capture expected patterns of

influence. The application across multiple performance metrics provides a comprehen-

sive view of configuration sensitivity for evidence-based decision-making in complex

space systems.

Configurations

The methodology addresses two different but complementary questions that arise

when comparing multiple design configurations across stochastic scenarios. The first

question asks how many uncertainty scenarios are needed before we can trust that
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a configuration’s relative rank order is stable and the second question addresses the

magnitude of performance differences. Stability in rank order ensures sufficient data

collection before making comparisons, while significance testing provides the statisti-

cal rigor to justify specific quantitative claims about performance differences.

Ranking Convergence Analysis When running Monte Carlo simulations across

multiple uncertainty scenarios, configuration rankings can vary considerably in early

iterations as the simulation explores different regions of the uncertainty space. The

ranking convergence analysis determines if there are sufficient scenarios to determine

stable rank order. This analysis is essential because it balances computational expense

with confidence in rank order.

The core methodology tracks each configuration’s rank across cumulative uncer-

tainty scenarios and computes a rolling variance over a sliding window. For a sequence

of ranks r1, r2, . . . , rn observed across n cumulative scenarios, a sliding window of size

w examines w consecutive rank values. The rolling variance at position i is computed

as:

σ2
rolling(i) = 1

w

i+w−1∑
j=i

(rj − r̄i)2

where r̄i = 1
w

∑i+w−1
j=i rj is the mean rank within window i, and the window slides

forward as each new scenario is added to the cumulative set. Unlike global variance,

which computes a single statistic across all scenarios, rolling variance is a local, time-

varying measure that tracks stability as scenarios accumulate. Each window provides

a snapshot of rank variability over recent scenarios, enabling detection of convergence

as the simulation progresses.

A configuration’s ranking is considered converged when all of three conditions are

met simultaneously: the rolling variance must remain below 0.5 (rank units)2 for at

least three consecutive windows, the variance calculated over the most recent set of

scenarios must also be below 0.5 (rank units)2, and both conditions must be met at
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the same time. The threshold of 0.5 is selected based on the discrete nature of ranks.

Since ranks are dimensionless integers such as 1, 2, or 3, a variance of 0.5 (rank units)2

indicates the rank is oscillating minimally, roughly staying within plus or minus one

rank position. This level of variability represents acceptable stability for engineering

decision-making while being stringent enough to avoid false convergence signals.

For each configuration, the analysis computes mean, median, mode, and standard

deviation to characterize both central tendency and dispersion. The mean rank pro-

vides the average rank across all scenarios, offering insight into the configuration’s

typical performance level. Bootstrap-derived 95% confidence intervals estimate the

range within which the true underlying rank likely falls, accounting for sampling

uncertainty.

Statistical Significance Testing Even when rankings have converged and rela-

tive orderings are stable, rigorous statistical methods are required to make specific

quantitative claims about performance differences. While ranking convergence tells

us that Configuration A consistently ranks higher than Configuration B, it does not

quantify the difference between them. Statistical significance testing provides the

quantitative rigor to support such claims with defensible confidence levels.

To compare two configurations, a two-sample independent t-test (Welch’s t-test)

that does not assume equal variance is performed to determine whether the observed

difference in means is statistically distinguishable from zero [233]. This calculation

is done using scipy stats.ttest ind [234]. The Welch t-test method calculates degrees

of freedom using Equation 4.1. The null hypothesis posits that the true mean of the

configuration equals the true mean of the baseline, implying no real difference exists

between them. The alternative hypothesis states that the two means differ, indicating

a genuine performance gap. The test statistic is calculated as the difference in sample

means divided by the pooled standard error, which accounts for the variance and
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sample size of both groups. Using a significance level of α = 0.05, which represents

the standard threshold, the condition is straightforward: if the computed p-value is

less than 0.05, we reject the null hypothesis and conclude the difference is statistically

significant; if the p-value is 0.05 or greater, we fail to reject the null hypothesis and

conclude there is no statistically significant difference, meaning the configurations

show comparable performance.

ν =

(
s2

1
n1

+ s2
2

n2

)2

(
s2

1
n1

)2

n1−1 +

(
s2

2
n2

)2

n2−1

(4.1)

ν = degrees of freedom for Welch’s t-test

s2
1 = sample variance of group 1

s2
2 = sample variance of group 2

n1 = sample size of group 1

n2 = sample size of group 2

Complementing hypothesis testing, 95% confidence intervals are computed for

each configuration’s performance metrics. For the mean performance, the confidence

interval is calculated as the sample mean plus or minus the product of the critical

t-distribution value and the standard error, where standard error equals the sample

standard deviation divided by the square root of the sample size. For the 5th and 95th

percentiles, confidence intervals are instead calculated using bootstrap resampling:

1,000 resampled datasets are generated by randomly sampling with replacement from

the original data, the percentile is calculated for each resample, and the confidence

interval bounds are determined as the 2.5th and 97.5th percentiles of these bootstrap

estimates [235]. Bootstrap resampling is used for percentiles because, unlike means,
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percentiles do not have simple mathematical formulas for their confidence intervals.

Regardless of the calculation method, confidence intervals provide three crucial

pieces of information: the point estimate gives the best estimate of the true perfor-

mance, the uncertainty bounds define the range within which the true value likely

falls with 95% confidence, and the interval width serves as a precision indicator where

narrow intervals indicate precise estimates based on low variability while wide inter-

vals reveal high variability requiring caution in interpreting point estimates. The

margin of error, defined as the half-width of the confidence interval expressed as a

percentage of the point estimate, provides an intuitive measure of estimate precision

across all statistics.

Integration of the Two Methodologies The typical workflow proceeds in stages:

first, ranking convergence analysis is performed after initial scenario batches to assess

whether configurations have achieved stable relative orderings. Configurations with

converged rankings proceed to the significance testing phase, while those exhibiting

low confidence or lack of convergence indicate that they require additional scenario

collection. Once convergence is confirmed, significance testing evaluates the magni-

tude of observed differences, distinguishing between genuine performance gaps and

statistical noise. The combination enables confident statements of the form: ”Config-

uration A consistently ranks first across scenarios (ranking convergence), and achieves

a statistically significant 5% cost reduction compared to baseline (significance test-

ing).”

Ranking convergence analysis serves as a prerequisite quality check, ensuring that

sufficient scenarios have been executed before significance testing is conducted. The

ranking convergence analysis ensures computational efficiency by identifying when

additional scenarios provide negligible new information, while the significance testing

provides the evidential foundation needed to support specific performance claims.
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4.1.3 Sensitivity Testing

The results of this framework provide preliminary, rank-ordered solutions to pro-

vide guidance on which investments could encourage OOS in LEO. Global and local

sensitivity studies can verify assumptions and distributions in the framework. Lin

demonstrates this practice in their thesis, subjecting their simulation to a series of

tests to check their assumptions and highlight the best candidates for future work

[208]. Lin toggles on reservoir, facility, and market uncertainty to conduct their sen-

sitivity study. By comparing the impact of different uncertainties, they determine

which ones influence the shape of the VARG curves. Highly influential variables

are good candidates for future refinement. Variables with low influence, meanwhile,

are sufficiently represented with the provided assumptions and distributions. Lin

also conducts sensitivity studies on assumed, deterministic values such as the cost of

options, benefit of options, and implementation time, first parameterizing nominal

values over a wide range and observing the change in rank order. Subsequently, Lin

makes small perturbations for their local sensitivity study, observing the change of

the economics statistics. Checking sensitivity of distributions and assumptions pro-

vides a form of validation for the methodology choices and highlights opportunities

for future work.

To measure the effect of key sources of uncertainty on the results, this thesis

evaluates the impact of various aspects and sources of uncertainty, such as:

• Static launch and satellite manufacturing cost: rather than varying these

parameters over time, this test holds launch and satellite manufacturing cost

constant over the 30-year duration

• Removed Effect of Technology Obsolescence: The simulated time to ob-

solescence in this sensitivity test is set to be greater than the simulated duration

• Varying Initial Failure Rate: The initial failure rate (1 failure per year)
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is set to 0.75 and 0.5 failures per year to understand the relationship between

satellite reliability and relative CAAS performance

• ADR Vehicle Deployment: This sensitivity test only deploys ADR vehicles

by launching them from Earth; the CAAS warehouses do not deploy ADR

vehicles

• Reusable Second Stage Vehicles: This sensitivity test does not incorporate

reusable second stage vehicles

Perturbation Analysis for Deterministic Assumptions

Perturbation analysis provides a method for evaluating the robustness of system con-

figuration rankings under parametric uncertainty. This approach addresses the critical

challenge of determining whether apparently superior configurations maintain their

performance advantages when estimated input parameters deviate from their initially

assumed values. By varying uncertain cost parameters and comparing the resulting

configuration rank order, this approach allows the user to determine which config-

uration settings are robust. It also highlights which assumed values would require

greater attention and a higher degree of confidence in future work.

Rather than perturb every assumed/estimated deterministic input, the perturba-

tion analysis focuses on a subset of inputs based on cost frequency and magnitude.

This selection approach ensures that perturbation analysis captures economically con-

sequential uncertainties that could significantly affect long-term system performance

while establishing a manageable and computationally efficient process.

Key parameters selected for perturbation analysis include:

• ADR vehicle launch and deployment cost: major operational expense

affecting service delivery economics
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• Satellite refurbishment cost: high-frequency operational expense directly

impacting service value proposition

• Satellite repair cost: frequent operational cost affecting maintenance strategy

decisions

• ADR operation cost: recurring service cost influencing collection economics

• Satellite refueling cost: operational expense affecting satellite lifetime ex-

tension strategies

• Downmass return cost: expense of returning satellites back to Earth on a

reusable second stage vehicle

• ADR cost min fraction: The minimum fraction of present-day ADR vehicle

costs that is achievable within the learning-curve ADR cost model

The variables listed here are perturbed by X1.25 and X1.5 or X0.5 and X0.25.

These perturbation magnitudes reflect a compromise between capturing meaningful

uncertainty ranges while maintaining computational tractability. This level represents

a realistic assessment of parameter uncertainty in many engineering applications,

encompassing forecasting errors, technological variations, and market volatility.

The analysis evaluates how configuration rankings change under perturbations,

providing insight into the reliability of configuration selection decisions. Configura-

tions that maintain their relative performance advantages across perturbation sce-

narios demonstrate robustness, while those exhibiting high sensitivity to parameter

changes may represent risk if the assumed input lacks a high degree of confidence.

4.2 H1 Experimentation: Collection as a Service

The first set of experiments focuses on the economic and environmental performance

of different options in a laissez-faire environment, without flexible deployment deci-
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sions and without the simulated effect of market-based policy. To review, the research

questions and related hypothesis are as follows:

Research Question 1: Economic Value
Which collection hub infrastructure configuration provides the greatest eco-

nomic value for OOS providers compared to traditional practices?

Research Question 2: Emission Reduction
Which collection hub infrastructure configuration provides the greatest reduc-

tion in atmospheric emissions compared to traditional overpopulation sparing

strategies?

Hypothesis 1
Multi-echelon sparing with collection warehouses that strategically retain sal-

vageable assets for future reuse, refueling, or repair, while facilitating ADR mis-

sions and the controlled deorbiting or Earth-return of old satellites via reusable

second stages provide better or comparable economic feasibility and sustainabil-

ity metrics compared to infrastructures that rely on the overpopulation sparing

strategy and ADR missions launched directly from Earth.

• Brainstorm options
• Identify sources of 

uncertainty
• Down-select 

promising flexibility 
enablers

Concept Formation

• Model design elements
• Characterize sources of 

uncertainty
• Establish assumptions for 

deterministic simulation 
settings

• Determine configuration 
combinations, N

Modeling

• Run Monte Carlo 
simulations for N 
configurations in a 
set through M 
scenarios

Simulation

• Determine necessary number of 
replications, M

• Assess significance of configuration 
variables, uncertain variables and their 
interactions

• Create VARG plots for outputs of interest
• Measure performance and significance of 

decision rules
• Conduct sensitivity testing on 

deterministic simulation settings

Analysis

Revisit assumptions as necessary

• Identify  top 
performing design 
configurations that 
reduce emissions 
without significant 
cost increases 
compared to the 0-
warehouse baseline

Result

Supporting Condition for Hypothesis 1: 
CAAS outperforms both overpopulation 

and multi-echelon sparing in terms of 
emissions and cost

Figure 4.3: Experiment 1 Methodology to Support Hypothesis 1

Experiment 1 provides equivalence to the real-world problem by considering a

reality where satellite operators are obligated to clean up failed satellites in their con-

stellations. The experiment reflects realistic factors including uncertain technology
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costs (launch and manufacturing), stochastic satellite failures, and the economic pres-

sures that currently favor the make-use-dispose approach to constellation operations.

This experiment compares three strategies, starting with the 0-warehouse baseline,

where the operator uses overpopulation to replenish constellations after failures and

launches ADR vehicles from Earth every time there is a satellite failure. The second

strategy is the multi-echelon sparing strategy that uses parking spares and in-plane

spares to reduce costs associated with replenishing the satellite constellation. This

strategy also deploys ADR vehicles exclusively from Earth. Lastly, the CAAS strat-

egy builds upon the multi-echelon parking strategy to provide collection services as

well as ADR docking and refueling. The experiment considers various versions of

the future with uncertain variables sampled from distributions or a DOE. The antici-

pated decrease in launch cost and spacecraft manufacturing costs are critical sources

of uncertainty, since they make it easier to continue using the make-use-dispose ap-

proach to satellite constellation operations. These scenarios do not predict the future

so much as model the effect of various futures to highlight which aspects of the

CAAS architecture, if any, provide consistent and measurable benefits compared to

the other baseline strategies. In doing so, this experiment addresses gaps from liter-

ature, namely, which aspects of CAAS provide improvements in cost and emissions

and which aspects are worthy of continued study. This experiment highlights oppor-

tunities to improve circularity in LEO-based space operations and determines if, to

the extent that the CAAS infrastructure is able to service satellites, it provides mea-

surable benefits, even if servicing is not extended for the entire constellation. This

experiment seeks to understand which technology investments, such as RPO-capable

satellites, servicable satellites, or collection warehouses capable of refueling/repairing

satellites in space, provide the most compelling case for the overall CAAS concept.
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Table 4.1: Space Infrastructure Configuration Parameters and Dependencies

Parameter Values Dependency Description
Number of warehouses {0,1,2,3,4} None Depot infrastructure

configuration: 0 = No
warehouse (baseline);
1–3 = Number of ware-
houses.

CAAS Mode {0,1} # warehouses ̸= 0 Collection-as-a-Service
availability: 0 = Dis-
abled; 1 = Enabled.

Refuelable/Repairable
Upgrades

{0,2} # warehouses ̸= 0
and CAAS = 1

Refuelable satellites: 0 =
No refuelable capability;
2 = Refuelable capabil-
ity.

Warehouse Upgrades {0,2} Upgraded satellites
= 2

Warehouse upgrade
strategy: 0 = No up-
grades; 2 = Immediate
upgrades.

RPO-Capable Satellites {0,2} # warehouses ̸= 0
and CAAS = 1

Rendezvous and Proxim-
ity Operations capabil-
ity: 0 = Disabled; 2 =
Available.

Table 4.2: Configuration Combination Summary

Configuration Type Count Key Characteristics
Baseline (No Depot) 1 All parameters = 0
Depot without CAAS 3 depot config ∈ {1,2,3,4}, CAAS config = 0
CAAS without Refuelable 8 CAAS config = 1,

refuelable config
= 0,
rpo config ∈ {0,2}

Full CAAS System 16 CAAS config = 1,
refuelable config
= 2,
upgraded config ∈
{0,2},
rpo config ∈ {0,2}

Total Combinations 29 Per scenario iteration
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4.2.1 Configuration Set

These configuration settings and dependencies produce 29 unique configurations, de-

scribed in Table 4.8, where CAAS config is CAAS mode, depot config is the number

of warehouses, refuelable config (Rf) is whether satellites are upgraded to be refu-

elable and repairable, rpo config (RPO) is whether satellites are RPO-capable, and

upgraded config (Upg) is whether warehouses are upgraded to service satellites.

4.2.2 VARG Results for Experiment 1

This section presents the results of the Value at Risk and Gain (VARG) analysis

combined with ranking convergence assessment and statistical significance testing for

multiple performance metrics across different space operations configurations. The

analysis evaluated 29 unique configurations through 80 uncertainty scenarios across

seven key performance metrics to identify superior configurations, assess ranking sta-

bility, and determine the statistical significance of observed performance differences.

The output metrics are:

• Customer costs: the total cost that the satellite constellation operator acrues

over the 30 year timeline, including costs related to operating the constellation

as well as the CAAS infrastructure

• Total Operational costs: the total cost that the satellite constellation operator

acrues over the 30 year timeline, excluding the initial infrastructure cost

• Total Emissions: the total NOx emissions, in kg, from all spacecraft reentering

the atmosphere, accounting for both intact reentry and demise

• Total refurbished satellites: the total number of satellites that have been refur-

bished, either on Earth or in space
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• Satellite refurbished in space: the total number of satellites that have been

refurbished in space

• Total Cost over Total Collections: the total number of collected satellites com-

pared to the total cost of the entire system

• Total Cost over Total Refurbishments: the total number of refurbished satellites

compared to the total cost of the entire system

The VARG analysis computes average performance, Value at Risk and Value at

Gain for each metric across all tested configurations. The ranking convergence anal-

ysis confirmed that 80 uncertainty scenarios provide stable rank orderings for key

performance metrics, with the top-performing configurations achieving convergence

confidence levels. This ranking stability in top performing configurations across 80

scenarios provides confidence that the relative performance orderings identified rep-

resent robust patterns rather than transient fluctuations in early scenario iterations.

Experiment 1 Results

The analysis of configurations spanning zero to four warehouses reveals distinct pat-

terns in both relative ranking and absolute performance differences. The top ranking

configuration for each output is provided in Table 4.3. The ranking convergence

analysis confirms that the optimal CAAS configuration for total cost (D1, C1, Rf0,

Up0, RP2) maintains consistent second-place ranking across uncertainty scenarios,

demonstrating that a single-depot CAAS configuration with RPO-capable satellites

and without satellite or warehouse upgrades reliably provides the most cost-effective

CAAS solution. While the 0-warehouse baseline configuration (D0, C0, Rf0, Up0,

RP0) has a stable 1st place ranking, when examining the magnitude of this advan-

tage through statistical significance testing, the results reveal a more nuanced picture

of cost comparability.

216



Table 4.3: Parameter Settings for Top Performing Configurations: Experiment 1

Configuration Depot Upgraded Refuelable RPO CAAS

0-Warehouse Baseline 0 0 0 0 0
Best Cost No-CAAS 1 0 0 0 0
Best for Total Cost &
Weighted Multi-Objective

1 0 0 2 1

Best for Total Emissions & To-
tal Num Sat Refurb. & Cost/-
Collection

4 0 2 2 1

Best for Cost/Refurbish &
Sats Refurb. In Space

4 2 2 2 1

Best for Op Costs 4 0 0 2 1

The cost-superior CAAS configuration, shown in Table 4.4, achieves an average to-

tal cost of $4.49B, representing a 0.77% increase compared to the 0-warehouse baseline

of $4.45B. Statistical significance testing indicates this difference is not statistically

distinguishable [p=0.59, 95% CI: [4.40e9, 4.57e9] , MoE: 1.90%], demonstrating com-

parable cost performance despite the stable superior ranking. This finding illustrates

an important distinction between ranking stability and statistical significance: the

single-depot CAAS configuration consistently ranks second across scenarios, yet the

magnitude of its cost disadvantage is modest enough that it falls within the uncer-

tainty bounds of the baseline performance. Decision-makers can therefore conclude

that CAAS reliably offers cost-comparable performance to the 0-warehouse baseline.

This similarity in total cost is illustrated in the total cost VARG plot, provided in

Figure 4.4. Table 4.4 includes the top-ranked configuration for each output metric

and compares their total cost across percentiles. This table also includes their 95%

confidence intervals, margin of error, percent comparison to the 0-warehouse baseline

and multi-echelon baseline and the respective p-values.

The emissions performance, illustrated in Figure 4.5 and tabulated in Table 4.5,

presents a contrasting pattern where both ranking superiority and statistical signifi-
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0-warehouse baseline has 
better Value at Gain than 
top CAAS config (lower 5th

percentile)

Smaller gap between 0-
warehouse baseline and 
top CAAS config at the 
average

Top CAAS config has better 
Value at Risk (lower 95th

percentile) than 0-
warehouse baseline

Total Costs for Experiment 1: VARG Plot

Figure 4.4: Total Cost for Experiment 1: VARG Plot

cance align to demonstrate clear CAAS advantages. The emissions-superior configu-

ration (D4, C1, Rf2, Up0, RP2) with four depots and serviceable satellites achieves

-10.58% lower average emissions compared to the baseline (p < 0.001, 95% CI: [3.04M

kg, 3.20M kg], MoE = 2.41%), representing a statistically significant and substantial

reduction. Even the cost-optimal CAAS configuration, which prioritizes economic effi-

ciency over environmental performance, achieves -6.84% lower emissions on average (p

< 0.001, 95% CI: [3.17M kg, 3.33M kg], MoE = 2.45%), a reduction that is both statis-

tically significant and operationally meaningful. These emissions advantages persist

across all performance percentiles: at the 5th percentile, CAAS configurations achieve

-9.75% (top cost configuration) and -9.69% (top emissions configuration) reductions,

while even at the 95th percentile, emissions remain -5.44% and -8.67% lower than

baseline for the top cost and top emissions configurations, respectively. The consis-
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tency of emissions benefits across the entire performance distribution, combined with

strong statistical significance, demonstrates that environmental advantages represent

fundamental architectural benefits of the warehouse approach rather than outcomes

contingent on favorable conditions.

CAAS has much better VAG, 
avg, and VAR than the
0-warehouse baseline

Red arrows represent the difference 
in emissions between the cost-
optimal and emissions-optimal 
configurations

Multi-echelon baseline only reduces 
emissions at the 5th percentile 

compared to the 0-warehouse baseline

Total NOx Emissions for Experiment 1: VARG Plot

Figure 4.5: Total NOx Emissions for Experiment 1: VARG Plot

The comparison with the multi-echelon sparing baseline without CAAS provides

additional context for evaluating the CAAS value proposition. The best no-CAAS

multi-echelon configuration (D1, C0, Rf0, Up0, RP0, P0) has 3.29% higher costs than

the 0-warehouse baseline, a difference that is statistically significant (p = 0.025, 95%

CI: [$4.51B, $4.69B], MoE = 1.97%). Additionally, this multi-echelon configuration

shows no statistically significant emissions improvement over the baseline (0.22% dif-

ference, p = 0.89, 95% CI: [3.42M kg, 3.58M kg], MoE = 2.24%), indicating that

passive depot infrastructure without active collection capability or ADR deployment
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provides no environmental benefits. This comparison validates that the CAAS oper-

ational model specifically, not merely the presence of depot infrastructure for sparing

purposes, drives both the cost feasibility and environmental advantages observed in

the analysis.

The refurbishment throughput metric, shown in Table 4.6, reveal the fundamental

architectural difference between CAAS and traditional sparing strategies. The cost-

optimal CAAS configuration enables an average of 65 satellite refurbishments over the

30-year simulation period with 95% CI [54,75]. The emissions-optimal configuration

with greater infrastructure investment achieves 191 average refurbishments with 95%

CI [169, 213]. In contrast, both the 0-warehouse baseline and multi-echelon config-

urations without CAAS achieve zero refurbishments by definition. While the abso-

lute refurbishment numbers remain modest relative to the scale of mega-constellation

operations, they represent meaningful progress toward circular space systems and

demonstrate proof-of-concept for satellite lifetime extension through collection and

servicing infrastructure. They highlight that an OOS system does not need to service

an entire constellation to provide meaningful benefits.

Refurbishment rates carry multiple sustainability implications: fewer satellites

burning up in the atmosphere translates to decreased manufacturing demand for

replacement satellites, and lower launch requirements with their associated environ-

mental footprints. Each satellite refurbished rather than replaced represents avoided

lifecycle environmental impacts from material extraction, component manufacturing,

assembly operations, and launch services. While this framework focuses primarily on

atmospheric NOx emissions, refurbishment rates indicate broader circular economy

benefits that extend beyond the explicitly modeled environmental metrics.
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Table 4.4: Experiment 1: Total Cost

Top 
Performing 

Metric
Configuration Percentile Total Cost 

Value ($)
Total Cost CI 

Lower
Total Cost CI 

Upper
Total Cost 

MoE%
Total Cost % 

vs Baseline

Total Cost p-
value 

(Baseline)

Total Cost 
Sig? (Baseline)

Total Cost % 
vs No-CAAS

Total Cost p-
value (No-

CAAS)

Total Cost 
Sig? (No-

CAAS)

avg 4.45E+09 4.36E+09 4.54E+09 2.085 N/A N/A N/A -3.188 0.026 Yes
5th 3.95E+09 3.89E+09 4.04E+09 1.906 N/A N/A N/A -3.981 0.026 Yes

95th 5.25E+09 5.01E+09 5.69E+09 6.443 N/A N/A N/A -3.146 0.026 Yes
avg 4.60E+09 4.51E+09 4.69E+09 1.972 3.293 0.026 Yes N/A N/A N/A
5th 4.12E+09 4.10E+09 4.21E+09 1.321 4.146 0.026 Yes N/A N/A N/A

95th 5.43E+09 5.09E+09 5.82E+09 6.728 3.249 0.026 Yes N/A N/A N/A
avg 4.49E+09 4.40E+09 4.57E+09 1.896 0.766 0.590 No -2.446 0.074 No
5th 4.06E+09 4.03E+09 4.10E+09 0.841 2.702 0.590 No -1.387 0.074 No

95th 5.18E+09 4.98E+09 5.56E+09 5.582 -1.474 0.590 No -4.574 0.074 No
avg 4.86E+09 4.78E+09 4.94E+09 1.685 9.195 0.000 Yes 5.713 0.000 Yes
5th 4.44E+09 4.39E+09 4.49E+09 1.122 12.194 0.000 Yes 7.728 0.000 Yes

95th 5.54E+09 5.27E+09 5.81E+09 4.846 5.525 0.000 Yes 2.205 0.000 Yes
avg 5.01E+09 4.92E+09 5.09E+09 1.673 12.507 0.000 Yes 8.920 0.000 Yes
5th 4.56E+09 4.51E+09 4.62E+09 1.206 15.350 0.000 Yes 10.758 0.000 Yes

95th 5.73E+09 5.50E+09 5.99E+09 4.330 9.141 0.000 Yes 5.707 0.000 Yes
avg 4.84E+09 4.76E+09 4.92E+09 1.674 8.681 0.000 Yes 5.216 0.000 Yes
5th 4.42E+09 4.36E+09 4.45E+09 1.018 11.801 0.000 Yes 7.350 0.000 Yes

95th 5.47E+09 5.27E+09 5.77E+09 4.521 4.063 0.000 Yes 0.789 0.000 Yes

0-Warehouse Baseline
d:0, up:0, rf:0, 

RPO:0, CAAS:0

Best Cost No-CAAS
d:1, up:0, rf:0, 

RPO:0, CAAS:0

Best Total Cost & 
Weighted Multi-

Objective

d:1, up:0, rf:0, 
RPO:2, CAAS:1

Best emissions, Total 
Num Sat Refurb, 

cost/collect

d:4, up:0, rf:2, 
RPO:2, CAAS:1

Best for 
Cost/Refurbish & 

Sats Refurb. In Space

d:4, up:2, rf:2, 
RPO:2, CAAS:1

Best for Operational 
Costs

d:4, up:0, rf:0, 
RPO:2, CAAS:1
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Table 4.5: Experiment 1: Total NOx Emissions

Top 
Performing 

Metric
Configuration Percentile

Total 
Emissions 
Value(kg)

Total 
Emissions CI 

Lower

Total 
Emissions CI 

Upper

Total 
Emissions 

MoE%

Total 
Emissions % 

vs Baseline

Total 
Emissions p-

value 
(Baseline)

Total 
Emissions 

Sig? (Baseline)

Total 
Emissions % 
vs No-CAAS

Total 
Emissions p-

value (No-
CAAS)

Total 
Emissions 
Sig? (No-

CAAS)
avg 3.49E+06 3.41E+06 3.56E+06 2.165 N/A N/A N/A -0.223 0.887 No
5th 2.88E+06 2.74E+06 3.02E+06 4.786 N/A N/A N/A 4.035 0.887 No

95th 3.95E+06 3.88E+06 4.12E+06 3.047 N/A N/A N/A -0.778 0.887 No
avg 3.50E+06 3.42E+06 3.58E+06 2.240 0.223 0.887 No N/A N/A N/A
5th 2.77E+06 2.72E+06 3.04E+06 5.897 -3.879 0.887 No N/A N/A N/A

95th 3.98E+06 3.89E+06 4.07E+06 2.179 0.784 0.887 No N/A N/A N/A
avg 3.25E+06 3.17E+06 3.33E+06 2.455 -6.844 0.000 Yes -7.051 0.000 Yes
5th 2.60E+06 2.53E+06 2.79E+06 4.926 -9.747 0.000 Yes -6.105 0.000 Yes

95th 3.73E+06 3.67E+06 3.88E+06 2.800 -5.440 0.000 Yes -6.176 0.000 Yes
avg 3.12E+06 3.04E+06 3.20E+06 2.416 -10.582 0.000 Yes -10.782 0.000 Yes
5th 2.60E+06 2.39E+06 2.64E+06 4.834 -9.689 0.000 Yes -6.044 0.000 Yes

95th 3.60E+06 3.49E+06 3.76E+06 3.770 -8.673 0.000 Yes -9.383 0.000 Yes
avg 3.15E+06 3.07E+06 3.23E+06 2.480 -9.805 0.000 Yes -10.006 0.000 Yes
5th 2.54E+06 2.43E+06 2.65E+06 4.349 -11.678 0.000 Yes -8.114 0.000 Yes

95th 3.65E+06 3.56E+06 3.75E+06 2.649 -7.605 0.000 Yes -8.323 0.000 Yes
avg 3.21E+06 3.14E+06 3.28E+06 2.201 -8.058 0.000 Yes -8.262 0.000 Yes
5th 2.67E+06 2.51E+06 2.81E+06 5.569 -7.144 0.000 Yes -3.397 0.000 Yes

95th 3.66E+06 3.56E+06 3.80E+06 3.263 -7.165 0.000 Yes -7.887 0.000 Yes

0-Warehouse Baseline
d:0, up:0, rf:0, 

RPO:0, CAAS:0

Best Cost No-CAAS
d:1, up:0, rf:0, 

RPO:0, CAAS:0

Best Total Cost & 
Weighted Multi-

Objective

d:1, up:0, rf:0, 
RPO:2, CAAS:1

Best emissions,  Total 
Num Sat Refurb, 

cost/collect

d:4, up:0, rf:2, 
RPO:2, CAAS:1

Best for 
Cost/Refurbish & 

Sats Refurb. In Space

d:4, up:2, rf:2, 
RPO:2, CAAS:1

Best for Operational 
Costs

d:4, up:0, rf:0, 
RPO:2, CAAS:1
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Table 4.6: Experiment 1: Number of Refurbishments

Top 
Performing 

Metric
Configuration Percentile Num Sat 

Refurb Value

Num Sat 
Refurb CI 

Lower

Num Sat 
Refurb CI 

Upper

Num Sat 
Refurb MoE%

avg 0.00 0.00 0.00 N/A
5th 0.00 0.00 0.00 N/A

95th 0.00 0.00 0.00 N/A
avg 0.00 0.00 0.00 N/A
5th 0.00 0.00 0.00 N/A

95th 0.00 0.00 0.00 N/A
avg 64.91 54.11 75.71 16.636
5th 0.00 0.00 0.00 -

95th 143.20 121.00 184.00 21.997
avg 191.40 169.72 213.08 11.328
5th 27.55 0.00 59.90 108.711

95th 319.25 304.20 345.00 6.390
avg 184.85 171.71 197.99 7.108
5th 100.40 83.00 114.75 15.812

95th 282.30 260.00 310.00 8.856
avg 157.98 140.32 175.63 11.176
5th 3.80 0.00 49.30 648.684

95th 260.75 243.45 287.00 8.351

Best emissions,  Total 
Num Sat Refurb, 

cost/collect

d:4, up:0, rf:2, 
RPO:2, CAAS:1

Best for 
Cost/Refurbish & 

Sats Refurb. In Space

d:4, up:2, rf:2, 
RPO:2, CAAS:1

Best for Operational 
Costs

d:4, up:0, rf:0, 
RPO:2, CAAS:1

0-Warehouse Baseline
d:0, up:0, rf:0, 

RPO:0, CAAS:0

Best Cost No-CAAS
d:1, up:0, rf:0, 

RPO:0, CAAS:0

Best Total Cost & 
Weighted Multi-

Objective

d:1, up:0, rf:0, 
RPO:2, CAAS:1
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Operational cost analysis provides insight into the economic mechanisms under-

lying CAAS performance. Excluding initial capital expenditure and focusing solely

on ongoing operational expenses, the cost-optimal CAAS configuration achieves -

2.81% lower operational costs compared to the 0-warehouse baseline (p = 0.078, 95%

CI: [$3.22B, $3.39B], MoE = 2.57%). While this operational cost advantage shows

marginal significance (p = 0.078, slightly above the α = 0.05 threshold), the trend

suggests genuine operational efficiencies from asset reuse and lifetime extension. The

near-significance combined with the narrow confidence interval indicates that with

modest additional scenarios, this operational advantage would likely achieve full sta-

tistical confirmation. More importantly, the operational cost reduction quantifies the

ongoing economic benefits that offset capital investment, identifying the necessary

budget range to make CAAS costs equal to the 0-warehouse baseline.

Experimental Observation 1.1
CAAS demonstrates statistically significant emissions reductions and refur-

bishment rates compared to the 0-warehouse baseline, while achieving cost-

comparable performance. Multi-echelon sparing without CAAS shows neither

cost advantages nor emissions benefits, validating that active collection ca-

pability specifically drives the observed sustainability improvements and cost

feasibility.

Constraining the design space to a maximum of 1 depot, the analysis focuses

comparison between the most economically viable CAAS architectures and the 0-

warehouse baseline. In this case, the emissions-superior single-depot configuration is

the same as the cost-superior configuration (D1, C1, Rf0, Up0, RP2, P0). Predictably,

the refurbishment-superior single-depot configuration features both upgraded satel-

lites and warehouses (D1, C1, Rf2, Up2, RP2, P0), but its improvement in refurbish-

ments over the top cost/emission configuration is not statistically significant.
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The emissions reduction mechanisms identified through the analysis reveal impor-

tant architectural insights about CAAS sustainability benefits. Upgraded warehouses

(enabling in-space satellite servicing) do not demonstrate statistical significance for

emissions reduction, as configurations with and without this capability show com-

parable emissions performance when other parameters are held constant. Instead,

the primary emissions drivers emerge from the number of warehouses, Earth-return

dual-mission operations, and reusable second-stage adoption. When launch vehicles

conduct combined missions, such as resupplying orbital warehouses or replenishing

constellation satellites before collecting the old satellites for Earth-return, the consol-

idated operations reduce overall launch requirements and associated emissions. Sim-

ilarly, the transition toward reusable second stages that return to Earth rather than

burning up in the atmosphere provides substantial emissions benefits as the launch

vehicle fleet modernizes over the simulation period. The ability to prevent satellites

from burning up through controlled deorbiting contributes to emissions reduction,

but the more substantial benefit comes from reducing launch cadence requirements

and launch vehicle demise through asset reuse.

The refuelable satellite parameter demonstrates complex interactions with emis-

sions outcomes. While refuelable satellites enable in-space servicing that extends

satellite lifetimes, the servicing operations themselves require frequent propellant de-

livery launches that can increase emissions if not carefully managed. Additionally,

refuelable and modular satellites provide benefits for Earth-based refurbishment by

streamlining the process, which is represented by an uncertain factor that reduces

Earth-based refurbishment costs. This highlights a critical consideration for sus-

tainable space infrastructure design: well-intentioned servicing capabilities must be

evaluated holistically to ensure they do not inadvertently exacerbate environmental

impacts through increased launch activity. The current framework’s focus on NOx

emissions from atmospheric reentry represents a conservative environmental account-
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ing that omits numerous lifecycle impacts from satellite manufacturing, launch vehicle

production, and ground operations. A comprehensive lifecycle analysis incorporating

multiple emission types and manufacturing impacts would provide a more complete

environmental characterization, though the current NOx-focused analysis combined

with the refurbishment metric offers reasonable proxies for broader sustainability per-

formance.

4.2.3 Experimental Support for Hypothesis 1

Hypothesis 1 posits that multi-echelon sparing with collection warehouses that strate-

gically retain salvageable assets for future reuse, refueling, or repair, while facilitat-

ing ADR missions and the controlled deorbiting or Earth-return of old satellites via

reusable second stages provide better or comparable economic feasibility and improved

sustainability metrics compared to infrastructures that rely on the overpopulation

sparing strategy and ADR missions launched directly from Earth. The experimental

evidence from both ranking convergence analysis and statistical significance testing

provides comprehensive support for these claims, though with important nuances in

the interpretation of ”better or comparable” economic performance.

Economic Feasibility: Comparable Performance with Consistent Advantages

The economic feasibility claim receives strong but nuanced support from the dual sta-

tistical methodology. Ranking convergence analysis confirms that the cost-optimal

CAAS configuration (single depot with RPO-capable satellites) maintains stable

second-place ranking across the 80 uncertainty scenarios with the 0-warehouse base-

line taking first place, demonstrating consistent relative superiority in cost perfor-

mance relative to other CAAS configurations. Statistical significance testing reveals

that this ranking advantage reflects modest absolute differences rather than dramatic

cost improvements compared to the 0-warehouse baseline and other 1-depot CAAS
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configurations, establishing cost parity rather than superiority for average perfor-

mance outcomes.

The cost-superior CAAS configuration achieves an average total cost of $4.49B,

representing a 0.77% increase compared to the 0-warehouse baseline of $4.45B. Sta-

tistical significance testing indicates this difference is not statistically distinguishable

[p=0.59, 95% CI: [4.40e9, 4.57e9], MoE: 1.90%], demonstrating comparable cost per-

formance despite the stable superior ranking. This combination of stable ranking with

statistically insignificant absolute differences represents a valuable finding rather than

a limitation. It demonstrates that CAAS reliably achieves the ”comparable economic

feasibility” condition specified in the hypothesis. The hypothesis explicitly includes

”comparable” alongside ”better” economic performance, recognizing that cost parity

combined with sustainability advantages represents a viable value proposition, and

the experimental evidence confirms this expectation.

The comparison with multi-echelon sparing without CAAS capability provides

critical context for evaluating the warehouse value proposition. The best no-CAAS

depot configuration incurs 3.29% higher costs than baseline (p = 0.025, statistically

significant), demonstrating that passive depot infrastructure without active collection

capability and ADR deployment provides no economic benefit. This establishes that

the CAAS operational model specifically enables the cost competitiveness observed

in the analysis.

Operational cost analysis provides insight into the economic mechanisms underly-

ing CAAS performance. Excluding initial capital expenditure and focusing solely on

ongoing operational expenses, the cost-optimal CAAS configuration achieves -2.81%

lower operational costs compared to baseline (p = 0.078, 95% CI: [$3.22B, $3.39B],

MoE = 2.57%). While this operational cost advantage shows marginal significance (p

= 0.078, just above the α = 0.05 threshold), the trend suggests genuine operational

efficiencies from the CAAS concept. More importantly, the operational cost reduction
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quantifies the ongoing economic benefits that offset capital investment, identifying the

necessary budget range to make CAAS costs equal to the 0-warehouse baseline.

Sustainability Performance: Notable Improvements

The sustainability claims receive unambiguous and comprehensive empirical support

from both ranking and significance analyses. The emissions metric demonstrates

both stable superior ranking and statistically significant absolute advantages across

all CAAS configurations and performance percentiles. The cost-optimal CAAS config-

uration achieves -6.84% lower average emissions compared to baseline (p < 0.001, 95%

CI: [3.17M kg, 3.33M kg], MoE = 2.45%), a reduction that is both statistically signif-

icant and operationally meaningful in absolute terms. The emissions-optimal config-

uration with greater infrastructure investment delivers even stronger performance at

-10.58% (p < 0.001, 95% CI: [3.04M kg, 3.20M kg], MoE = 2.41%), though at higher

(and statistically significant) cost. These emissions advantages persist across per-

centiles, indicating fundamental architectural benefits rather than scenario-dependent

outcomes.

The comparison with multi-echelon sparing without CAAS proves particularly re-

vealing for understanding sustainability mechanisms. The best no-CAAS depot con-

figuration shows no statistically significant emissions improvement over the baseline,

confirming that passive depot infrastructure alone provides negligible environmental

benefits. Combined with the significant cost penalty for no-CAAS configurations, this

establishes that active collection and ADR-deployment capability specifically drives

both the cost competitiveness and environmental advantages observed for CAAS.

The hypothesis’s architectural prescription of collection warehouses with strategic

asset retention and ADR deployment are essential for achieving the claimed benefits.
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Mechanism Validation and Architectural Insights

The RPO capability (satellite rendezvous and proximity operations) proves to be con-

sistently beneficial across multiple metrics, enabling satellites to maneuver to collec-

tion locations and facilitating efficient servicing operations. This capability maintains

stable ranking for both cost and emissions outcomes, validating the hypothesis’ em-

phasis on collaborative maneuvering as a core architectural element. Meanwhile, the

warehouse upgrade capability (enabling in-space satellite servicing) does not demon-

strate statistical significance for emissions reduction when considered in isolation,

contrary to initial expectations. Configurations with and without this capability

show comparable emissions when other parameters are held constant, indicating that

Earth-return refurbishment may offer better environmental and economic trade-offs

than in-space servicing under current technology and cost assumptions. This trend

is evident in Figure 4.6, which shows total NOx emissions compared to the year that

Earth-return capability matures. When the capability becomes available earlier in

the timeline, there is more opportunity to reduce emissions, as evidenced by the wide

spread on the left hand side of the plot. As it takes longer for Earth-return to become

available, there is a higher average total emissions.

The refuelable satellite parameter exhibits complex interactions requiring care-

ful interpretation. While refuelable satellites enable in-space servicing that extends

satellite lifetimes, the servicing operations themselves require frequent propellant de-

livery launches that can increase emissions if not carefully managed. Serviceable

satellites appear in the top emissions and top refurbishments configurations (along

with 4 depots), but when the design space is limited to 1 depot, the top emissions

configuration (D1, C1, Rf0, Up0, RP2) does not feature serviceable satellites. This

suggests serviceable satellites make a larger impact on emissions when coupled with

larger CAAS infrastructures. The configuration (D4, C1, Rf2, Up0, RP2) achieves

-10.58% emissions compared to the 0-warehouse baseline while the same configuration
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Figure 4.6: NOx Emissions vs. Year of Earth-Return Maturity

without serviceable satellites has -8.06% emissions. Critically, this provides a larger

difference than the comparison between (D1, C1, Rf2, Up0, RP2) and (D1, C1, Rf0,

Up0, RP2). This difference is notable but not measurable with statistical significance

for the given number of scenarios.

Limitations and Scope Considerations

Several limitations constrain the interpretation of results and suggest areas for future

investigation. The economic model assumptions regarding CAAS capital costs sig-

nificantly influence cost parity conclusions. If infrastructure costs decrease through

technological learning or if satellite replacement costs increase due to capability en-

hancements, the economic case could shift from parity toward clear superiority. The

analysis may not fully capture the economic value of extended satellite operational
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life, particularly for high-value payloads where service continuity could provide ben-

efits through enhanced mission flexibility.

The environmental modeling remains limited to NOx emissions from atmospheric

reentry, omitting numerous lifecycle impacts from satellite manufacturing, launch

vehicle production, material extraction, and ground operations. A comprehensive

lifecycle analysis incorporating multiple emission types, manufacturing impacts, and

end-of-life disposal options would provide more complete environmental characteri-

zation. The current framework also does not fully model the technical risks and op-

erational complexities of rendezvous, docking, refueling, and component replacement

operations that could affect real-world cost and reliability, potentially underestimat-

ing implementation challenges.

Market structure assumptions based on single-operator models may not capture

network effects, risk pooling, or economies of scale that could emerge in a multi-

operator CAAS marketplace serving diverse constellation operators. If multiple con-

stellations share warehouse infrastructure and services, fixed costs could be amor-

tized across larger customer bases, potentially transforming the economic case from

marginal cost parity to clear cost advantages. The 30-year simulation timeframe

may not fully capture long-term trends in launch cost reduction, satellite capability

enhancement, or regulatory evolution that could influence CAAS value propositions

over extended periods.

4.2.4 Hypothesis 1 Substantiation

The experimental evidence validates the central claims in Hypothesis 1 through the

combined ranking convergence analysis and statistical significance testing. CAAS-

enabled warehouse configurations achieve the hypothesized ”better or comparable

economic feasibility” through demonstrated cost parity with the 0-warehouse baseline.

Meanwhile, CAAS provides environmental and operational benefits.
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The sustainability performance meets hypothesis expectations with statistically

significant emissions reductions and establishment of satellite refurbishment capabil-

ity (65-191 satellites serviced over 30 years depending on the configuration). These

environmental advantages persist robustly across all performance percentiles and un-

certainty scenarios, demonstrating fundamental architectural benefits rather than

scenario-dependent outcomes. The mechanisms hypothesized to deliver these ben-

efits receive validation.

Organizations facing emissions constraints, environmental regulations, or corpo-

rate sustainability commitments will find compelling justification in the demonstrated

significant reductions across emissions and refurbishment metrics. The achievement

of cost parity means these environmental benefits come without economic penalties

over the long run, enabling sustainability leadership without substantial financial

sacrifice.

Overall, the hypothesis is substantiated: multi-echelon collection warehouses with

strategic satellite collection and ADR deployment, collaborative maneuvering through

RPO-capable satellites, and Earth-return operations using reusable launch vehicles

provide comparable economic feasibility while delivering significant sustainability im-

provements. This establishes CAAS as a compelling solution for organizations op-

erating under environmental constraints or prioritizing long-term sustainability, and

positions the architecture as economically viable even for organizations with less im-

mediate environmental pressures. The achievement of cost comparability combined

with sustainability superiority represents a threshold accomplishment for real-world

implementation of circular space systems and validates the fundamental value propo-

sition of warehouse-based satellite collection and servicing infrastructure.
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4.3 H2 Experimentation: Flexibility

Experiment set 2 considers how the CAAS concept could be improved with flexible,

incremental infrastructure deployment. To recap, the relevant research questions and

hypothesis are as follows:

Research Question 3: Flexibility Options
Which flexible option, or set of flexible options, provides the greatest economic

value and environmental benefit for OOS providers under uncertainty, com-

pared to inflexible infrastructures?

Hypothesis 2
If the flexibility framework models CAAS system evolution, captures uncer-

tainty, and models interactive decision-making, it will identify which flexible

enablers and strategies for both servicing infrastructure and satellite constella-

tion further improve the economic feasibility and sustainability metrics of the

CAAS infrastructure compared to infrastructures that only rely on the over-

population sparing strategy.

The supporting condition for hypothesis 2 is that the model identifies statistically

significant flexible enablers or strategies that give CAAS infrastructures an advantage

over baseline configurations in terms of both economic feasibility and sustainability

metrics. Therefore, the model includes flexible strategies triggered by decision rules,

as highlighted in Figure 4.7.

Experiment 2 offers equivalence to the real-world problem by modeling the capital

investment decisions that infrastructure operators face when deploying OOS systems

under uncertainty. Rather than assuming all infrastructure capabilities are avail-

able from day one, this experiment reflects how real infrastructure projects are often

deployed: incrementally, based on demonstrated return on investment and evolving
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• Brainstorm options
• Identify sources of 

uncertainty
• Down-select 

promising flexibility 
enablers and 
flexibility strategies

Concept Formation

• Model design elements
• Characterize sources of 

uncertainty
• Establish assumptions for 

deterministic simulation 
settings

• Determine configuration 
combinations, N

• Model decision rules

Modeling

• Run Monte Carlo 
simulations for N 
configurations in a 
set through M 
scenarios

Simulation

• Determine necessary number of 
replications, M

• Assess significance of configuration 
variables, uncertain variables and their 
interactions

• Create VARG plots for outputs of interest
• Measure performance and significance of 

decision rules
• Conduct sensitivity testing on 

deterministic simulation settings

Analysis

Revisit decision rules and assumptions as necessary

• Identify  top 
performing flexible 
options that reduce 
emissions without 
significant cost 
increases compared 
to inflexible 
configurations

Result

Supporting Condition for Hypothesis 2: 
CAAS with flexible options outperform 

CAAS without flexible options

Figure 4.7: Experiment 2 Methodology to Support Hypothesis 2

market conditions. When flexibly deployed, each technology option is triggered by

decision rules that compare the anticipated benefits of an investment with its fixed

and recurring costs, therefore mirroring how operators would evaluate whether to

expand capabilities (like adding warehouse capability, deploying RPO-enabled satel-

lites) based on observed constellation needs and cost trajectories. Just like in Exper-

iment 1, Experiment 2 features various future scenarios to show how these options

perform over a variety of futures and which provide consistent, measurable benefits.

This experiment addresses gaps from literature by considering the value of flexibility

in the rollout of the OOS infrastructure itself, not just the flexible value that OOS

provides to the satellite constellation operator. While prior work has examined how

on-orbit servicing benefits satellite operators, no studies have systematically evalu-

ated which infrastructure elements should be deployed initially versus conditionally

based on evolving cost conditions. This experiment determines which technologies

over-extend the infrastructure versus which enable its future productivity, revealing

whether technologies such as RPO-capable satellites are best deployed from the very

start or deployed later in the simulation under favorable conditions. Additionally,

Experiment 2 includes sensitivity studies on uncertain variables as well as aspects of

the CONOPS, such as the ability to deploy ADR vehicles in space, to provide further

insight into the conditions that make the CAAS concept attractive. While ideally all

uncertain variables and estimated values would receive sensitivity testing, for the pur-

pose of demonstrating the framework’s capability to conduct sensitivity tests while
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maintaining thesis scope, this experiment focuses on a selection of parameters that

are anticipated to be top influencers on the results. Overall, Experiment 2 seeks

to quantify the conditions and flexible strategies/enablers that make CAAS attrac-

tive from both the financial and environmental perspectives, specifically identifying

optimal deployment timing for each infrastructure element.

4.3.1 Configuration Set

Compared to the previous experiment set, the satellite upgrade (Rf - refuelable),

warehouse upgrade (Upg - upgraded), and RPO configuration variables include the

possibility for dynamic deployment of the option (config = 1), along with the option

never being available (config=0) and the option being immediately available (con-

fig=2), as shown below in Table 4.7. Table 4.1 explains the dependencies of each

configuration while Table 4.8 illustrates the combinations that form the configuration

set for this set of experiments. Since Experiment 1 uncovered that 1 warehouse is

the cost-superior CAAS configuration, the flexibility experiments focus on one initial

warehouse.

Table 4.7: Key Changes from Previous Configuration Logic

Parameter Previous
Logic

Updated
Logic

depot config {0,1,2,3} {0,1}
refuelable config {0,2} only {0,1,2}
upgraded config {0,2} when refu-

elable = 2, else 0
{0,1,2} when re-
fuelable ∈ {1,2},
else 0

rpo config {0,2} only {0,1,2}
add new wh config {0} only {0,1}

The analysis indicates that 80 uncertainty seeds are adequate for providing sta-

tistically significant results across all primary outputs (cost, emissions, number of

refurbishments).
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Table 4.8: Configuration Combination Summary

Configuration
Type

Count Key Characteristics

Baseline (No Depot) 1 depot config = 0
CAAS config = 0
All CAAS-related params = 0

CAAS without Sat
Upgrades

6 depot config = 1
CAAS config = 1
refuelable config = 0
upgraded config = 0
add new wh config ∈ {0,1}
rpo config ∈ {0,1,2}
(6 combinations: 2 warehouse
× 3 rpo)

CAAS with Optional
Sat Upgrades

18 refuelable config = 1
upgraded config ∈ {0,1,2}
add new wh config ∈ {0,1}
rpo config ∈ {0,1,2}
(18 combinations: 3 × 2 × 3)

CAAS with Immedi-
ately Available Sat
Upgrades

18 refuelable config = 2
upgraded config ∈ {0,1,2}
add new wh config ∈ {0,1}
rpo config ∈ {0,1,2}
(18 combinations: 3 × 2 × 3)

Total Combina-
tions

43 Per scenario iteration
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4.3.2 VARG Results for Experiment 2

This section presents comprehensive results of the Value at Risk and Gain (VARG)

analysis combined with statistical significance testing and ranking convergence as-

sessment for multiple performance metrics across different configurations with flexible

infrastructure update options. The analysis evaluated 43 unique configurations across

80 scenarios, tabulated in Table 4.9, across seven key performance metrics, incorpo-

rating additional infrastructure flexibility parameters including warehouse additions,

refuelable satellite options, and dynamic infrastructure scaling. The framework en-

ables analysis of superior commitment strategies across different services, revealing

when pre-commitment outperforms flexible deployment or vice versa.

Table 4.9 presents the settings for the top-performing configurations based on

ranking convergence analysis across 80 uncertain scenarios. In all scenarios, the option

to add a new warehouse is never exercised, so add new wh config is excluded from

the results. Ranking convergence analysis indicates that for average total cost, the

rank order is stable and converged for nearly all configurations, with the 0-warehouse

baseline maintaining rank 1 and the flexible CAAS configuration (D1, Rf1, Up0, RP2)

achieving rank 2.

The introduction of flexible options reveals important insights through ranking

convergence analysis rather than through statistically significant performance differ-

ences, as illustrated by the small differences in the VARG plot, provided in Figure 4.8.

The cost-superior CAAS configuration is (D1, C1, Rf1, Up0, RP2, P0), which rep-

resents a 0.43% cost increase compared to the 0-warehouse baseline, while the cost-

superior inflexible CAAS configuration (D1, C1, Rf0, Up0, RP2, P0) shows a 0.67%

cost increase relative to baseline. However, these differences are not statistically sig-

nificant given the 80 uncertainty scenarios analyzed; establishing measurable cost

differences for such a small percent would require on the order of 1,000 scenarios.

The rank convergence analysis provides confidence that flexible satellite deploy-
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Table 4.9: Configuration Parameter Settings for All Depots - Flexible

Configuration Depot Upgraded Refuelable RPO CAAS

0-Warehouse Baseline 0 0 0 0 0
Best Cost No-Flexibility 1 0 0 2 1
Best for Total Cost & Op
Costs & Weighted Multi-
Obj

1 0 1 2 1

Best for Total Emissions 1 2 1 2 1
Best for Cost/Refurbish
& Sats Refurb. In Space

1 2 2 2 1

Best for Total Num Sat
Refurb

1 1 1 2 1

ment (Rf=1) paired with pre-initialized RPO-capable satellites represents the top-

performing CAAS configuration, though the absolute magnitude of improvement can-

not be precisely quantified with the current sample size. This finding highlights a crit-

ical distinction: while ranking stability indicates which configurations perform best

relative to each other, determining the exact performance gap requires substantially

more scenarios.

Experimental Observation 2.1
Ranking convergence analysis indicates that flexible satellite upgrade deploy-

ment (Rf=1) paired with pre-initialized RPO-capable satellites consistently

ranks as the top-performing CAAS configurations for various metrics across

uncertainty scenarios. However, with 80 scenarios, the absolute performance

differences (such as 0.427% vs 0.67% avg cost increase) are too small to be

measured with confidence.

For average emissions, the ranking of the top-performing configuration (D1, C1,

Rf1, Up2, RP2, P0) is stable, though rankings at the 5th and 95th percentiles do not

converge, indicating continued sensitivity to extreme outcomes. This configuration
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achieves an average of 63 refurbished satellites in total and 19 satellites refurbished in

space. Notably, all top-performing configurations share RPO=2, indicating the crit-

ical importance of pre-initialized RPO capability for improving refurbishment rates,

cost, and emissions.

Flexible configuration 
provides lower 5th

percentile compared to 
inflexible

Flexible configuration 
provides lower average 
compared to inflexible

Flexible
configuration 
provides lower 95th

percentile 
compared to 
inflexible

Total Costs

Figure 4.8: Total Cost for Flexible CAAS vs. Inflexible CAAS vs. Baseline for
Experiment 2: Ranking convergence indicates stable relative ordering despite lack of
statistical significance in absolute differences

Like the cost results, improvements in emissions associated with flexibility are

not measurable with 80 scenarios. The ranking convergence analysis provides con-

fidence in the relative ordering of configurations based on average performance but

cannot precisely quantify the magnitude of emissions reductions. This analysis fur-

ther confirms that the number of depots and pre-initialized RPO-capability emerge

as the prominant factor affecting both emissions and refurbishment metrics, with

incremental deployment playing a secondary role compared to infrastructure scale.
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Table 4.10: Experiment 2: Total Cost

Top 
Performing 

Metric
Configuration Percentile Total Cost 

Value ($)
Total Cost CI 

Lower
Total Cost CI 

Upper
Total Cost 

MoE%
Total Cost % 

vs Baseline

Total Cost p-
value 

(Baseline)

Total Cost 
Sig? (Baseline)

Total Cost % 
vs No-CAAS

Total Cost p-
value (No-

CAAS)

Total Cost 
Sig? (No-

CAAS)

avg 4.43E+09 4.34E+09 4.52E+09 2.090 N/A N/A N/A -0.668 0.632 No

5th 3.97E+09 3.89E+09 4.03E+09 1.754 N/A N/A N/A -1.896 0.632 No

95th 5.25E+09 5.02E+09 5.69E+09 6.375 N/A N/A N/A 1.684 0.632 No

avg 4.46E+09 4.38E+09 4.54E+09 1.832 0.673 0.632 No N/A N/A N/A

5th 4.05E+09 4.03E+09 4.10E+09 0.831 1.933 0.632 No N/A N/A N/A

95th 5.17E+09 4.99E+09 5.56E+09 5.516 -1.656 0.632 No N/A N/A N/A

avg 4.45E+09 4.37E+09 4.53E+09 1.852 0.427 0.762 No -0.244 0.852 No

5th 4.06E+09 4.02E+09 4.09E+09 0.851 2.148 0.762 No 0.211 0.852 No

95th 5.17E+09 4.93E+09 5.55E+09 6.024 -1.658 0.762 No -0.002 0.852 No

avg 4.48E+09 4.40E+09 4.56E+09 1.847 1.158 0.412 No 0.482 0.713 No

5th 4.08E+09 4.05E+09 4.11E+09 0.820 2.760 0.412 No 0.812 0.713 No

95th 5.18E+09 4.96E+09 5.57E+09 5.900 -1.341 0.412 No 0.320 0.713 No

avg 4.53E+09 4.44E+09 4.61E+09 1.864 2.150 0.132 No 1.467 0.269 No

5th 4.12E+09 4.09E+09 4.14E+09 0.666 3.663 0.132 No 1.697 0.269 No

95th 5.27E+09 4.98E+09 5.70E+09 6.850 0.262 0.132 No 1.950 0.269 No

avg 4.45E+09 4.37E+09 4.54E+09 1.868 0.545 0.700 No -0.127 0.923 No

5th 4.06E+09 4.02E+09 4.10E+09 1.033 2.252 0.700 No 0.314 0.923 No

95th 5.19E+09 4.94E+09 5.55E+09 5.861 -1.155 0.700 No 0.509 0.923 No

0-Warehouse 
Baseline

d:0 | up:0 | 
rf:0 | RPO:0 | 

CAAS:0

Best Cost No-
Flexibility

d:1 | up:0 | 
rf:0 | RPO:2 | 

CAAS:0

Best for Total 
Cost, Op Cost, 
Weighted Multi-

Objective

d:1 | up:2 | 
rf:1 | RPO:2 | 

CAAS:1

Best for Total 
Emissions

d:1 | up:2 | 
rf:1 | RPO:2 | 

CAAS:1

Best for 
Cost/Refurbish, 
Sats Refurb. In 

Space

d:1 | up:2 | 
rf:2 | RPO:2 | 

CAAS:1

Best for Total 
Num Sat Refurb

d:1 | up:1 | 
rf:1 | RPO:2 | 

CAAS:1
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Table 4.11: Experiment 2: Total NOx Emissions

Top 
Performing 

Metric
Configuration Percentile

Total 
Emissions 
Value (kg)

Total 
Emissions CI 

Lower

Total 
Emissions CI 

Upper

Total 
Emissions 

MoE%

Total 
Emissions % 

vs Baseline

Total 
Emissions p-

value 
(Baseline)

Total 
Emissions 

Sig? (Baseline)

Total 
Emissions % 

vs No-
Flexibility

Total 
Emissions p-

value (No-
Flexibility)

Total 
Emissions 
Sig? (No-

Flexibility)

avg 3.49E+06 3.41E+06 3.56E+06 2.071 N/A N/A N/A 6.861 0.000 Yes

5th 2.98E+06 2.83E+06 3.04E+06 3.527 N/A N/A N/A 12.874 0.000 Yes

95th 3.95E+06 3.91E+06 4.01E+06 1.191 N/A N/A N/A 5.531 0.000 Yes

avg 3.26E+06 3.19E+06 3.33E+06 2.255 -6.421 0.000 Yes N/A N/A N/A

5th 2.64E+06 2.60E+06 2.86E+06 5.019 -11.406 0.000 Yes N/A N/A N/A

95th 3.74E+06 3.68E+06 3.77E+06 1.150 -5.241 0.000 Yes N/A N/A N/A

avg 3.27E+06 3.18E+06 3.35E+06 2.588 -6.237 0.000 Yes 0.196 0.910 No

5th 2.62E+06 2.46E+06 2.79E+06 6.283 -12.138 0.000 Yes -0.826 0.910 No

95th 3.87E+06 3.74E+06 3.92E+06 2.282 -1.981 0.000 Yes 3.441 0.910 No

avg 3.25E+06 3.17E+06 3.33E+06 2.427 -6.645 0.000 Yes -0.239 0.886 No

5th 2.55E+06 2.48E+06 2.74E+06 5.038 -14.332 0.000 Yes -3.303 0.886 No

95th 3.74E+06 3.68E+06 3.86E+06 2.445 -5.247 0.000 Yes -0.006 0.886 No

avg 3.27E+06 3.19E+06 3.34E+06 2.356 -6.272 0.000 Yes 0.160 0.923 No

5th 2.66E+06 2.54E+06 2.84E+06 5.651 -10.788 0.000 Yes 0.697 0.923 No

95th 3.80E+06 3.68E+06 3.82E+06 1.766 -3.663 0.000 Yes 1.665 0.923 No

avg 3.26E+06 3.18E+06 3.35E+06 2.513 -6.346 0.000 Yes 0.080 0.962 No

5th 2.55E+06 2.47E+06 2.80E+06 6.301 -14.445 0.000 Yes -3.431 0.962 No

95th 3.85E+06 3.68E+06 3.89E+06 2.702 -2.351 0.000 Yes 3.050 0.962 No

0-Warehouse 
Baseline

d:0 | up:0 | 
rf:0 | RPO:0 | 

CAAS:0

Best Cost No-
Flexibility

d:1 | up:0 | 
rf:0 | RPO:2 | 

CAAS:0

Best for Total 
Cost, Op Cost, 

Weighted 
Multi-Objective

d:1 | up:2 | 
rf:1 | RPO:2 | 

CAAS:1

Best for Total 
Emissions

d:1 | up:2 | 
rf:1 | RPO:2 | 

CAAS:1

Best for 
Cost/Refurbish
, Sats Refurb. 

In Space

d:1 | up:2 | 
rf:2 | RPO:2 | 

CAAS:1

Best for Total 
Num Sat Refurb

d:1 | up:1 | 
rf:1 | RPO:2 | 

CAAS:1
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Table 4.12: Experiment 2: Number of Refurbishments

Top 
Performing 

Metric
Configuration Percentile Num Sat 

Refurb Value

Num Sat 
Refurb CI 

Lower

Num Sat 
Refurb CI 

Upper

Num Sat 
Refurb MoE%

Num Sat 
Refurb % vs 

No-Flexibility

Num Sat 
Refurb p-
value (No-
Flexibility)

Num Sat 
Refurb Sig? 

(No-
Flexibility)

avg 0.00 0.00 0.00 N/A N/A N/A N/A

5th 0.00 0.00 0.00 N/A N/A N/A N/A

95th 0.00 0.00 0.00 N/A N/A N/A N/A

avg 64.89 53.60 76.17 17.389 N/A N/A N/A

5th 0.00 0.00 0.00 0.000 N/A N/A N/A

95th 143.30 123.00 192.00 24.075 N/A N/A N/A

avg 66.20 54.59 77.81 17.545 2.023 0.872 No

5th 0.00 0.00 0.00 0.000 - - N/A

95th 142.95 125.00 165.00 13.991 -0.244 0.872 No

avg 62.55 53.67 71.43 14.194 -3.602 0.746 No

5th 0.00 0.00 8.55 0.000 - - N/A

95th 128.00 118.00 143.00 9.766 -10.677 0.746 No

avg 69.34 60.79 77.89 12.334 6.858 0.533 No

5th 3.00 1.00 30.00 483.333 inf 0.533 No

95th 122.30 117.00 146.00 11.856 -14.655 0.533 No

avg 69.71 59.45 79.97 14.720 7.436 0.530 No

5th 0.00 0.00 8.75 0.000 - - N/A

95th 136.35 128.05 163.00 12.816 -4.850 0.530 No

Best for Total 
Emissions

d:1 | up:2 | 
rf:1 | RPO:2 | 

CAAS:1

Best for 
Cost/Refurbish
, Sats Refurb. 

In Space

d:1 | up:2 | 
rf:2 | RPO:2 | 

CAAS:1

Best for Total 
Num Sat Refurb

d:1 | up:1 | 
rf:1 | RPO:2 | 

CAAS:1

0-Warehouse 
Baseline

d:0 | up:0 | 
rf:0 | RPO:0 | 

CAAS:0

Best Cost No-
Flexibility

d:1 | up:0 | 
rf:0 | RPO:2 | 

CAAS:0

Best for Total 
Cost, Op Cost, 

Weighted 
Multi-Objective

d:1 | up:2 | 
rf:1 | RPO:2 | 

CAAS:1242



Experiment 2 Ranking Convergence and Statistical Significance

The statistical analysis of Experiment 2 reveals a fundamental limitation: differences

in total cost and emissions between flexible configurations, the baseline, and top no-

flexibility configurations are not statistically significant at any percentile (5th, aver-

age, or 95th) given the 80 uncertainty scenarios analyzed. While flexible deployment

(Rf=1) demonstrates consistent improvement in rank order, these improvements are

not measurable with the current sample size. Establishing statistical significance for

the observed performance differences would require on the order of 1,000 scenarios,

which would require cluster computing since each simulation takes 1-1.5 minutes to

run.

This finding necessitates reliance on ranking convergence analysis rather than

traditional hypothesis testing. The convergence framework provides confidence in

the relative ordering of configurations while acknowledging that absolute performance

differences remain too small to quantify precisely. For total cost, rankings converged

for nearly all configurations at the average, with the 0-warehouse baseline maintaining

rank 1 and (D1, Rf1, Up0, RP2) achieving stable rank 2. At the 5th percentile, the

top 3 configurations show converged rankings, though 95th percentile rankings have

not yet stabilized after 80 scenarios, indicating continued sensitivity to worst-case

outcomes.

For emissions, the rank-1 configuration (D1, Rf1, Up2, RP2) has stabilized at

the average, though neither the 5th nor 95th percentile rankings converge after 80

scenarios. Again, all top-performing configurations share RPO=2,continuing the pat-

tern from Experiment 1 even though this experiment included the option for flexible

RPO-capability deployment.

The rank order provides confidence that flexible satellite upgrades paired with pre-

initialized RPO-capable satellites represent the superior CAAS configuration for cost

management, but determining whether savings this translates to requires substantially
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more scenarios. This distinction is critical for decision-making: ranking convergence

guides technology selection and policy priorities, while statistical significance would

enable precise cost-benefit analysis and investment justification.

In addition to analyzing rank order convergence and hypothesis testing on config-

uration performance comparison, this experiment also uses regression-based variance

testing to determine the effect of each individual configuration variable. Statistical

significance is assessed at p < 0.05 with polynomial features up to degree 3. Starting

off with total cost, the satellite serviceability upgrade variable (Rf) and warehouse

upgrade variable (Upg) are significant for all percentiles. Meanwhile, the RPO config-

uration is not statistically significant for the 5th total cost. This suggests that RPO

primarily affects average performance and tail risk rather than extend opportunity

For total emissions, the satellite serviceability upgrade flexibility variable (Rf)

demonstrates a nuanced relationship with performance. While not statistically sig-

nificant for average or 95th percentile emissions, the satellite upgrade variable (Rf)

becomes significant at the 5th percentile, implying the satellite serviceability makes

an impact on extending the opportunity to reduce emissions. The RPO configuration

is significant for average and 5th percentile emissions, but not the 95th percentile.

Lastly, warehouse upgrades (Upg) are not statistically significant at any percentile

for total emissions.

Total refurbishments rely on all configuration variables, with the exception of

the 95th percentile, which solely depends on the number of warehouses and RPO-

capability. Meanwhile, total cost divided by total refurbishments depends on all

configuration variables except for the 5th percentile, which only replies on the num-

ber of depots. Overall, approximating variable influence using this regression-based

variance analysis aligns with ranking stability analysis; for instance, emissions rank-

ing becomes more stable when the warehouse upgrade variable is excluded from the

analysis.
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The convergence analysis yields several key insights that shape interpretation of

the results. First, the ranking framework successfully identifies relative performance

ordering even when absolute differences are too small for statistical significance. This

enables technology selection and policy prioritization based on converged rankings

while acknowledging uncertainty in precise performance quantification. Second, the

model reveals that incremental deployment flexibility is not as significant a driver

in reducing emissions as the fundamental choice of depot count, highlighting where

policy attention should focus. Third, Earth-based refurbishment emerges as the crit-

ical factor for the NOx emissions metric since adding space-based refurbishment has

marginal impact.

The frequent lack of statistical significance, despite stable rankings, has impor-

tant implications for technology adoption strategies. Flexibility investments may ap-

pear unjustified under traditional cost-benefit analysis requiring precise performance

quantification, yet the ranking convergence provides strong evidence for their rela-

tive superiority. This suggests that decision-making frameworks should incorporate

ranking-based evidence when sample sizes limit statistical power, particularly for com-

plex system-of-systems analyses where the cost of generating thousands of scenarios

may be prohibitive. Future work should focus on increasing scenario counts for con-

figurations near the top of each ranking to achieve statistical significance for precise

performance differences, while the current analysis provides sufficient confidence for

initial technology guidance and policy direction.

4.3.3 Sensitivity Testing

Uncertain Variable Sensitivity Test

To assess the robustness of the results to key sources of uncertainty, Experiment 2

was re-run under various alternative conditions, each isolating a different uncertain

variable or operational condition. To manage computational expense while providing
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a sufficient sample size for stable ranking, these tests use 20 scenarios each. While

20 scenarios are sufficient to establish stable cost rankings between configurations,

they are insufficient to quantify absolute performance differences between sensitivity

test results and nominal cases. Therefore, the cost and emissions differences reported

relative to the 0-warehouse baseline (sensitivity test vs. nominal) provide notional in-

sights into the magnitude of effects rather than statistically significant measurements.

Ideally, all assumptions should be perturbed to better understand their impact on

CAAS performance and each test should use 1000s of scenarios to quantify absolute

differences, but in the interest of scope, this thesis focuses on rank order comparison

for key operational uncertainties, like failure rates, as well as key cost uncertainties,

like ADR and servicing costs. Table 4.13 shows which configuration variables were

varied for these tests. Table 4.14, Table 4.15, and Table 4.16 summarize the results.

Table 4.13: Sensitivity Test Configuration Parameters

Parameter Values Dependency Description
Number of warehouses {0,1} None Depot infrastructure config-

uration: 0 = No warehouse
(baseline); 1 = Number of
warehouses.

CAAS Mode {0,1} # warehouses ̸= 0 Collection-as-a-Service
availability: 0 = Disabled; 1
= Enabled.

Refuelable/Repairable
Upgrades

{0,1,2} # warehouses ̸= 0
and CAAS = 1

0 = No upgrades; 1 = flex-
ible upgrades; 2 = Immedi-
ate upgrades.

Warehouse Upgrades {0,1,2} Upgraded satellites
= 2

Warehouse upgrade strat-
egy: 0 = No upgrades; 1 =
flexible upgrades; 2 = Imme-
diate upgrades.

RPO-Capable Satellites {0,2} # warehouses ̸= 0
and CAAS = 1

Rendezvous and Proximity
Operations capability: 0 =
Disabled; 2 = Available.
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Table 4.14: Sensitivity analysis results for key uncertain variables (top) and failure modeling, operations, and management
(bottom)

Sensitivity Test Top CAAS Cost
Config

Top Emissions
Config

Cost Diff.
vs. Nominal

Emis. Diff.
vs. Nominal

Technology Obsolescence
Removed

(D:1, Rf:1, Upg:0,
RPO:2)

(D:1, Rf:1, Upg:1,
RPO:2)

+0.6%, 0.6% −6.8%, −5.3%

Launch Cost Held Constant (D:1, Rf:1, Upg:0,
RPO:2)

(D:1, Rf:1, RPO:2) +1.0%, 0.6% −5.9%, −5.3%

Satellite Cost Held Constant (D:1, Rf:1,
Upg:0, RPO:2)

(D:1, Rf:1, Upg:0,
RPO:2)

−0.6%, 0.6% −7.9%, −5.3%

0.75X initial failure rate (D: 1, Rf: 1, Upg:
0, RPO: 2, P: 0)

(D: 1, Rf: 1, Upg:
0, RPO: 2, P: 0)

+1.8%, 0.6% −7.5%, −7.3%

0.5X initial failure rate (D: 1, Rf: 1, Upg:
0, RPO: 2, P: 0)

(D: 1, Rf: 1, RPO:
2, P: 0)

+3.0%, 0.6% −6.4%, −7.3%

ADR launched exclusively
from Earth

(D: 1, Rf: 1, Upg:
0, RPO: 2, P: 0)

(D: 1, Rf: 1, Upg:
0, RPO: 2, P: 0)

+1.4%, 0.8% −8.1%, −6.4%

No Reusable Second Stage
Vehicles

(D: 1, Rf: 1, Upg:
0, RPO: 2, P: 0)

(D:1, Rf:2, Upg:2,
RPO:2, P:0)

+0.8%, 0.5% +0.5%, −3.6%

Note: Sensitivity Cost and Emission difference columns show the difference between the top cost CAAS config compared to the
0-warehouse baseline, comparing the sensitivity result (left) to a nominal case without the sensitivity test applied (right). Bold

configuration tags indicate that CAAS configuration with sensitivity test applied outperforms the 0-warehouse baseline in terms of cost
(stable 1st place rank). Configuration tags include all configuration variables that could converge to a stable ranking within 20

scenarios.
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The top half of Table 4.14 includes sensitivity tests on key uncertain variables.

The removal of technology obsolescence yielded no difference in configuration rank-

ing compared to the original configuration, as the simulation algorithm inherently

prevents obsolete satellites from remaining active for extended periods, which means

the revenue loss from obsolete satellites has a minimal impact on total cost. When

launch costs were held at their initial values, the superior configuration remained

unchanged, demonstrating 2nd place ranking with cost differences staying within 1%

of the baseline. Notably, when satellite costs were held constant, the top CAAS cost

configuration achieved stable 1st place ranking, outperforming the 0-warehouse base-

line by -0.6%. This suggests that the CAAS concept becomes particularly attractive

if satellite costs decrease less over time than anticipated in this framework, as the

relative value of refurbishment infrastructure increases when new satellites remain

expensive.

The bottom half of Table 4.14 includes sensitivity tests on failure modeling, op-

erations, and failure management. All four tests maintained stable 2nd place cost

ranking, with the CAAS concept maintaining its measurable emissions advantage

over the baseline. The first two tests vary failure rate modeling by reducing the

assumed initial failure rate (1 satellite/year) by 3/4 and 1/2. Initial failure rate as-

sumptions demonstrated the most pronounced effects on cost competitiveness among

the uncertain variable tests, though the top CAAS configuration remained stable. The

standard model in this thesis assumes 1 satellite failure per year at the start of the

simulation. Reducing the initial failure rate to 0.75 failures per year increased the cost

difference to +1.8%, while further reduction to 0.5 failures per year yielded +3.0%,

compared to +0.6% under the baseline failure rate. This sensitivity reveals a critical

insight: the CAAS concept becomes significantly less cost- competitive when satellite

reliability improves, as fewer failures diminish the value of the refurbishment infras-

tructure. This relationship highlights that the economic case for CAAS is strongest
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in environments with higher satellite failure rates. The third test removes the abil-

ity to deploy ADR vehicles from the warehouses and restricts all ADR missions to

launch directly from Earth. Launching ADR entirely from Earth rather than includ-

ing depot-based deployment increased the cost difference to +1.4% (versus +0.8%

with nominal, depot-based ADR), highlighting the operational cost savings enabled

by depot-based ADR deployment. Interestingly, when ADR vehicles are launched

exclusively from Earth, there are slightly fewer emissions (-8.1%) than the nominal

CAAS case (-6.4%). While not measurable given the number of cases, this shows

how warehouse-based deployment of ADR vehicles may provide more cost benefits

than emissions benefits: reusing ADR vehicles saves money but requires launches to

sustain ADR-refueling operations in space. The 4th test removes all reusable second

stage vehicles from all configurations, which causes a slight increase in cost differ-

ence relative to the nominal case and a slight increase in emissions relative to the

0-warehouse baseline (which also includes the no-reusable second stage vehicle effect).

Importantly, across all uncertain variable sensitivity tests, the cost remained

within 3% of the 0-warehouse baseline, and with the exception of the no-reusable

second stage test, no test eliminated the emissions benefits of CAAS. Among all un-

certain variables tested, failure rate assumptions emerged as a strong driver of cost

performance, merited further attention in future work. The stability of configura-

tion rankings and the absence of any extreme changes in cost or emissions reinforce

confidence that the CAAS concept remains economically viable and environmentally

beneficial across a wide range of uncertain conditions.

Deterministic Variable Sensitivity Test

To assess the robustness of the results to key deterministic assumptions, Experiment

2 was re-run with systematic perturbations to operational cost parameters using 20

uncertain scenarios just as before. Table 4.15 and Table 4.16 present the results of
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these sensitivity tests, varying cost parameters with various multipliers. Two specific

conditions led to the CAAS configuration achieving stable 1st place cost ranking

(outperforming the 0-warehouse baseline):

• ADR Cost Min Fraction reductions (0.5X and 0.25X): When the minimum

achievable fraction of present-day ADR vehicle cost through learning curve ef-

fects is reduced to 50% or 25% of baseline assumptions, the CAAS concept

achieves cost superiority over the baseline (-1.0% and -2.0%, respectively). This

indicates that continued improvements in ADR vehicle manufacturing and de-

ployment efficiency could make CAAS economically superior.

• Earth-based Refuel and Repair Streamlining (0.5X and 0.25X multipliers): When

satellites are made to be refuelable or repairable, Earth-based refurbishment

costs decrease by some uncertain factor. When these factors are reduced by

50% or 25% (indicating more efficient Earth-based refurbishment processes),

the CAAS concept achieves stable 1st place ranking. This suggests that inno-

vations in Earth-based satellite servicing design could tip the economic balance

in favor of CAAS.

All other cost perturbations resulted in stable 2nd place cost ranking for the

CAAS configuration, with cost differences remaining within +0.5% to +0.9% of the

0-warehouse baseline. These small margins indicate near-competitive performance

across a wide range of operational cost assumptions. Critically, even the most pes-

simistic cost perturbations (e.g., 1.5X increases in refuel, refurbish, or repair costs)

did not cause CAAS costs to ”blow up” or diverge significantly from baseline, and all

scenarios maintained sufficient emissions reductions.

The superior CAAS configuration across all perturbation scenarios remained con-

sistent: one depot (D1), CAAS (C1), flexible satellite upgrades (Rf1), no warehouse

upgrades (Up0), and RPO-capable satellites (RP2). The consistent emergence of this
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configuration, combined with the absence of catastrophic cost modes under pessimistic

assumptions, reinforces confidence that the recommended architecture is robust to

parameter uncertainty within reasonable bounds.

Experimental Observation 2.2
The top ranked CAAS configuration (D:1, Rf:1, Upg:0, RPO:2) stays constant

through all sensitivity tests. While most scenarios show stable 2nd place cost

ranking with small differences from the 0-warehouse baseline, three conditions

achieve stable 1st place ranking: static satellite costs, reduced ADR minimum

costs (learning curve improvements), and streamlined refuel/repair Earth-based

processes. Failure rate emerges as the strongest driver of cost performance

among uncertain variables, with optimistic reliability assumptions degrading

CAAS cost-competitiveness. Importantly, no sensitivity test caused extreme

costs or eliminated emissions benefits (aside from removing reusable second

stage vehicles), reinforcing confidence in the CAAS concept’s robustness.

Risk Management Implications These sensitivity results provide important guid-

ance for risk-conscious decision-making. The stability of depot number, RPO, and

satellite upgrade configurations across all perturbation scenarios suggests these rep-

resent high-confidence decisions that should remain consistent regardless of moderate

parameter uncertainty.

Failure rate emerges as the most critical uncertain variable for CAAS cost-competitiveness.

The 2.4 percentage point cost swing between baseline and optimistic reliability scenar-

ios indicates that stakeholders should carefully assess expected satellite failure rates

in their specific operational environment before committing to CAAS infrastructure.

The economic case for CAAS is strongest when initial satellite reliability starts on

the order of 1 failure per year, as higher failure rates maximize the failure-collection

benefits of the CAAS concept.
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Table 4.15: Deterministic sensitivity analysis results for operational cost parameters (Part 1)

Sensitivity Test Top CAAS Cost
Config

Top Emissions
Config

Cost Diff.
vs. Nominal

Emis. Diff.
vs. Nominal

ADR cost Min Fraction 0.5X (D: 1, Rf: 1, Upg: 0,
RPO: 2, P: 0)

(D: 1, Rf: 1, Upg: 0,
RPO: 2, P: 0)

−1.0%, 0.7% −7.5%, −5.2%

ADR cost Min Fraction 0.25X (D: 1, Rf: 1, Upg: 0,
RPO: 2, P: 0)

(D: 1, Upg: 1, RPO: 2, P:
0)

−2.0%, 0.7% −6.8%, −5.2%

Earth-based Refuel and Re-
pair Stream. × 0.5

(D: 1, Rf: 1, Upg: 0,
RPO: 2, P: 0)

(D: 1, RPO: 2, P: 0) +0.5%, 0.7% −5.9%, −5.2%

Earth-based Refuel and Re-
pair Stream. × 0.25

(D: 1, Rf: 1, Upg: 0,
RPO: 2, P: 0)

(D: 1, RPO: 2, P: 0) +0.4%, 0.7% −7.0%, −5.2%

ADR Launch Cost 1.25X (D: 1, Rf: 1, Upg: 0,
RPO: 2, P: 0)

(D: 1, Rf: 0, Upg: 0,
RPO: 2, P: 0)

+0.9%, 0.6% −6.5%, −6.4%

ADR Launch Cost 1.50X (D: 1, Rf: 1, Upg: 0,
RPO: 2, P: 0)

(D: 1, RPO: 2, P: 0) +0.9%, 0.6% −5.2%, −6.4%

Refuel Cost 1.25X (D: 1, Rf: 1, Upg: 0,
RPO: 2, P: 0)

(D: 1, Rf: 2, Upg: 1,
RPO: 2, P: 0)

+0.6%, 0.5% −7.4%, −7.9%

Refuel Cost 1.50X (D: 1, Rf: 1, Upg: 0,
RPO: 2, P: 0)

(D: 1, RPO: 2, P: 0) +0.6%, 0.5% −8.3%, −7.9%

Refurbish Cost 1.25X (D: 1, Rf: 1, Upg: 0,
RPO: 2, P: 0)

(D: 1, Rf: 2, Upg: 0,
RPO: 2, P: 0)

+0.8%, 0.7% −5.7%, −5.6%

Note: Sensitivity Cost and Emission difference columns show the difference between the top cost CAAS config compared to the
0-warehouse baseline, comparing the sensitivity result (left) to a nominal case without the sensitivity test applied (right). Bold

configuration tags indicate that CAAS configuration with sensitivity test applied outperforms the 0-warehouse baseline in terms of cost
(stable 1st place rank). Configuration tags include all configuration variables that could converge to a stable ranking within 20

scenarios.
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Table 4.16: Deterministic sensitivity analysis results for operational cost parameters (Part 2)

Sensitivity Test Top CAAS Cost
Config

Top Emissions
Config

Cost Diff.
vs. Nominal

Emis. Diff.
vs. Nominal

Refurbish Cost 1.50X (D: 1, Rf: 1, Upg: 0,
RPO: 2, P: 0)

(D: 1, Rf: 0, Upg: 0,
RPO: 2, P: 0)

+0.7%, 0.7% −5.8%, −5.6%

Repair Cost 1.25X (D: 1, Rf: 1, Upg: 0,
RPO: 2, P: 0)

(D: 1, RPO: 2, P: 0) +0.7%, 0.7% −6.6%, −5.6%

Repair Cost 1.50X (D: 1, Rf: 1, Upg: 0,
RPO: 2, P: 0)

(D: 1, Rf: 2, RPO: 2, P:
0)

+0.7%, 0.7% −5.4%, −5.6%

ADR Op. Cost 1.25X (D: 1, Rf: 1, Upg: 0,
RPO: 2, P: 0)

(D: 1, Rf: 2, Upg: 2,
RPO: 2, P: 0)

+0.8%, 0.6% −6.3%, −6.3%

ADR Op. Cost 1.50X (D: 1, Rf: 1, Upg: 0,
RPO: 2, P: 0)

(D: 1, Rf: 1, Upg: 0,
RPO: 2, P: 0)

+0.8%, 0.6% −7.6%, −6.3%

Return Cost 1.0 X launch (D: 1, Rf: 1, Upg: 0,
RPO: 2, P: 0)

(D: 1, Rf: 2, Upg: 1,
RPO: 2, P: 0)

+0.8%, 0.7% −6.6%, −7.1%

Return Cost 1.5X launch (D: 1, Rf: 1, Upg: 0,
RPO: 2, P: 0)

(D: 1, Rf: 1, Upg: 2,
RPO: 2, P: 0)

+0.8%, 0.7% −6.8%, −7.1%

Note: Sensitivity Cost and Emission difference columns show the difference between the top cost CAAS config compared to the
0-warehouse baseline, comparing the sensitivity result (left) to a nominal case without the sensitivity test applied (right). Bold

configuration tags indicate that CAAS configuration with sensitivity test applied outperforms the 0-warehouse baseline in terms of cost
(stable 1st place rank). Configuration tags include all configuration variables that could converge to a stable ranking within 20

scenarios.
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The analysis also reveals two controllable pathways to cost superiority for CAAS:

(1) improvements in ADR vehicle cost reduction through learning curve effects, and

(2) innovations that streamline Earth-based satellite servicing design. For cost-

focused stakeholders, prioritizing R&D investments in these areas could enhance

CAAS economic competitiveness. In contrast, instability in emissions-superior con-

figurations across sensitivity tests (related to the warehouse upgrade configuration

variable) suggests that warehouse upgrades present risk for emissions-focused stake-

holders, since the benefits of initialized or flexibly-deployed warehouse upgrades are

not consistent.

4.3.4 Experimental Support for Hypothesis 2

The central hypothesis posits that: If the flexibility framework models CAAS system

evolution, captures uncertainty, and models interactive decision-making, it will iden-

tify which flexible enablers and strategies for both servicing infrastructure and satellite

constellation further improve the economic feasibility and sustainability metrics of the

CAAS infrastructure compared to infrastructures that only rely on the overpopulation

sparing strategy.

This hypothesis contains three testable components: (1) identifying beneficial

flexible enablers and strategies, (2) improving economic feasibility, and (3) improving

sustainability metrics, all relative to baseline strategies.

Key Findings

The flexibility experiment demonstrates that flexible satellite upgrade capability (Rf=1)

provides marginal operational value. Combined with initialized RPO capabilities

(RPO=2), the cost-optimal flexible configuration (D1, C1, Rf1, Up0, RP2, P0) shows

a 0.427% cost increase relative to baseline, compared to 0.67% for the best inflexible

CAAS configuration (D1, C1, Rf0, Up0, RP2, P0). This represents an improvement of
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0.243 percentage points, though these differences are not statistically significant with

80 uncertainty scenarios. The analysis relies on ranking convergence to establish rel-

ative performance ordering rather than precise quantification of benefits. Meanwhile,

presence of the warehouse upgrade variable (either 1 or 2) does not have statistically

significant impacts on emissions or total refurbishments. The framework reveals that

incremental deployment flexibility plays a secondary role compared to infrastructure

scale decisions and initial flexibility-enablers, like having RPO-capable satellites from

the start. Earth-return proves critical for NOx emissions reduction, while flexible

satellite upgrades provide consistent albeit small benefits across metrics.

The recommended configuration, 1 depot, flexible satellite upgrades (Rf=1), no

warehouse upgrades (Upg=0), and initialized RPO (RPO=2), proves to be robust

across the sensitivity analyses. Under deterministic cost and uncertain variable per-

turbations, the configuration maintains cost differences within a small percentage of

the 0-warehouse baseline, with exceptions occurring under reduced failure rate condi-

tions (+1.8% at 0.75× initial rate, +3% at 0.5× initial rate), highlighting that CAAS

economic competitiveness depends critically on satellite failure frequency.

Framework Capability Assessment

The framework successfully identified and differentiated flexible enablers through

VARG ranking convergence methodology combined with regression-based variance

testing:

Flexible satellite serviceability (Rf=1): Ranking convergence indicates this

provides the most consistent improvement for several metrics across scenarios. Regression-

based analysis of variance shows Rf is statistically significant (p < 0.05) for total cost

at all percentiles and for emissions at the 5th percentile, suggesting that it extends

opportunity to reduce emissions in best-case scenarios.

RPO capability (RPO=2): Pre-initialized RPO capability emerges as criti-
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cal across all top-performing configurations. Regression-based analysis of variance

indicates significance for average and 5th percentile emissions, but not 95th per-

centile, suggesting that RPO affects average performance and downside risk rather

than worst-case scenarios. All top-ranked configurations share RPO=2.

Warehouse upgrades (Upg): Regression-based analysis of variance shows ware-

house upgrades are statistically significant for cost at all percentiles but not signifi-

cant for emissions at any percentile. While upgraded warehouses improve space-based

refurbishment throughput, space-based refurbishment does not appear to be as at-

tractive as collection for Earth-return. Rankings become more stable when warehouse

upgrade variables are excluded, suggesting warehouse upgrades only have minor im-

portance.

Depot count: Consistently emerges as the dominant factor for emissions and

refurbishment metrics. In this experiment, the simulated decision-maker never ex-

ercised the option to add warehouses given the up-front costs, confirming the need

for policy intervention (addressed in Experiment 3) to achieve greater infrastructure

scale and associated environmental benefits.

Top Performing Aspects of the CAAS Concept: The sensitivity test sup-

ports the finding that reusable second stage vehicles are a critical enabler for the

CAAS concept, providing much of the cost and emissions savings. Additionally, the

sensitivity tests indicate that ADR vehicle deployment from CAAS warehouses fur-

ther improves the cost feasibility of the CAAS concept.

Economic Feasibility and Value Proposition

Flexibility demonstrates improved ranking performance relative to inflexible CAAS

configurations, though the absolute magnitude of improvement (0.243 percentage

points) cannot be precisely quantified with statistical confidence given the 80-scenario

sample size. The ranking convergence framework provides confidence in relative or-
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dering while acknowledging limitations in measuring exact performance differences,

which would require approximately 1,000 scenarios to establish statistical significance.

The strategic value of flexibility lies not in dramatic cost reductions but in con-

sistent relative performance across diverse uncertainty scenarios. Notably, sensitivity

analyses demonstrate that flexibility maintains its ranking advantage even under op-

erational cost perturbations.

However, the framework reveals a critical economic constraint: CAAS compet-

itiveness degrades substantially under improved satellite reliability conditions. At

0.5× the baseline failure rate (0.5 failures/year initial), cost disadvantage increases to

+3% versus baseline, indicating that the refurbishment infrastructure value proposi-

tion depends fundamentally on satellite failure frequency. This finding has important

implications for technology adoption timing: CAAS becomes less attractive as satel-

lite reliability improves. Based on historical evidence, 1 failure per year is a reasonable

starting failure rate for the OneWeb use case, but future work that considers other

constellations should be mindful of their failure rate approximations.

Hypothesis 2 Substantiation

The hypothesis is partially supported with important methodological and substan-

tive qualifications. The framework successfully identifies flexible satellite serviceabil-

ity (Rf=1) as the superior flexible strategy through ranking convergence analysis,

even when statistical significance cannot be established for absolute performance dif-

ferences. The combination of rank stability, regression-based variance testing, and

sensitivity tests provide sufficient confidence for technology and CONOPs guidance

despite sample size limitations, providing a credible basis for a screening tool. Over-

all, achieving true economic parity or advantage depends on factors beyond flexibility

alone.

The hypothesis is therefore partially supported: the framework identifies beneficial
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flexible enablers that should be initialized from the start and determines relative

ranking of flexible options, but the economic and sustainability improvements are

modest and context-dependent rather than transformative. Experiment 3 investigates

whether policy combinations with flexibility can overcome these limitations and create

pathways toward improved system circularity and feasibility.

4.4 H3 Experimentation: Policy

The third and final set of experiments apply policy parameters to the flexible CAAS

infrastructure to determine which policy set, if any, improves sustainability with-

out excessive costs to constellation operator and government. The related research

question and hypothesis are as follows.

Research Question 4: Policy Design
Which combination and calibration of policy parameters most effectively closes

the business case gap for OOS in LEO with minimal impact on overall industry

costs?

Hypothesis 3
If the flexibility framework models government intervention as parametric, time-

dependent “rewards” and “penalties”, then there exist scenario-dependent re-

ward/penalty schemes that best establish economically feasible OOS infrastruc-

tures that yield better sustainability metrics than laissez-faire OOS infrastruc-

tures developed with the same incremental deployment framework.

Figure 4.9 illustrates the additions to the methodology to support experimenta-

tion for hypothesis 3. Experiment 3.1 runs a wider range of policy parameters for each

proposed policy type in order to reduce the design space and identify parameters that

improve total cost, emissions, and/or throughput. For this initial analysis, the satel-

lite upgrade option and warehouse upgrade option are held constant at their flexible
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option setting (Rf=1; Upg=1). Next, Experiment 3.2 directly compares the down-

selected parameters from Experiment 3.1 and includes all settings for the warehouse

upgrade configuration variable to assess how policy might interact with warehouse

upgrade flexibility (Rf=1; Upg=0,1,2). Lastly, Experiment 3.3 takes a further down-

selection of policy parameters from Experiment 3.2 and considers the effect of starting

with either 1, 4 or 7 warehouses, as opposed to Experiments 3.1 and 3.2 that only

consider 1 initial warehouse for CAAS configurations with policy. Experiment 3.3

includes all settings for the warehouse upgrade configuration variable and includes

both flexible and pre-initialized satellite upgrades (Rf=1,2; Upg=0,1,2).

• Brainstorm options
• Identify sources of 

uncertainty
• Down-select 

promising flexibility 
enablers and 
flexibility strategies

• Identify policy 
options

Concept Formation

• Model design elements
• Characterize sources of 

uncertainty
• Establish assumptions for 

deterministic simulation 
settings

• Determine configuration 
combinations, N

• Model decision rules
• Model policies

Modeling

• Run Monte Carlo 
simulations for N 
configurations in a 
set through M 
scenarios

Simulation

• Determine necessary number of 
replications, M

• Assess significance of configuration 
variables, uncertain variables and their 
interactions

• Create VARG plots for outputs of interest
• Measure performance and significance of 

decision rules
• Conduct sensitivity testing on 

deterministic simulation settings

Analysis

Revisit decision rules and assumptions as necessary

• Identify  top 
performing policy 
parameters that 
reduce emissions 
without significant 
cost increases 
compared to laissez-
faire configurations

Result

Supporting Condition for Hypothesis 3: 
The framework identifies a policy scheme 

that improves sustainability metrics 
compared to laissez-faire configurations

Figure 4.9: Experiment 1 Methodology to Support Hypothesis 3

Experiment 3 provides equivalence to the real-world problem by building upon the

previous two experiments but now including the effect of policy implementation on the

cost and benefits assessment of the CAAS concept. These experiments incorporate

the various cost and reward parameters of each tested policy—all of which are based

on existing or proposed policies—into the very decision-making of the infrastruc-

ture. This resembles the real world because it models how satellite operators would

respond to various policy mechanisms, providing a testbed to show how proposed

policies interact with the CAAS concept. Additionally, these experiments include

flexible deployment, continuing the investigation from Experiment 2, but this time

exploring how policy and flexible decision-making work together. For instance, the

option to add a warehouse was never exercised in the Experiment 2 cases, but with an
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external catalyst such as policy incentives, this option may be triggered. This experi-

ment investigates whether such policy-triggered investments can reduce the economic

barriers to achieving greater sustainability and circularity.

This addresses gaps in literature because it tests the partnership between policy

and CONOPS never before proposed, creating a computational laboratory to assess

policy mechanisms and their varying parameters across various versions of the future

to analyze policy for robustness. Previously, no research has considered or attempted

to quantify the benefit that different policies could have on the business case for

LEO-based OOS and how they may affect sustainability metrics like reduced emis-

sions and increased refurbishment. Existing policy analyses for space sustainability

have remained largely qualitative or focused on compliance costs, rather than ex-

amining how policy instruments can enable economically viable infrastructure that

simultaneously improves environmental outcomes.

These experiments sought to identify what combination of policy, flexibility, and

initial investments provide the best sustainability benefits for the least expense to both

satellite operator and government, recognizing that there may be tradeoffs depending

on stakeholder priorities. The framework provides a tool for better understanding

those tradeoffs and their conditions.

4.4.1 Experiment 3.1: Policy Parameter Down-Selection Analysis

This section presents a comprehensive sensitivity analysis to identify high-performing

parameter configurations for eight policy schemes. The experiment employed variance-

based global sensitivity analysis across 20 scenarios per configuration, which was a

deliberate choice to achieve sufficient ranking stability for identifying top contenders

while managing computational expense. This scenario count provided reliable first-

place rankings for down-selection purposes, with the understanding that selected

configurations would undergo more extensive evaluation in subsequent experiments.
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Performance was evaluated through multiple objectives: total customer costs, total

emissions, number of refurbishments, and a weighted composite metric balancing eco-

nomic and environmental trade-offs. To manage the design space, satellite upgrade

configuration (Rf) and warehouse upgrade (Upg) variables were set to 1 (flexible).

At the end of each scenario, the government subsidy balances were subtracted

from total customer costs to properly account for net expenditure, ensuring fair com-

parison across policies. This treats the initial subsidy allocation as a government

loan reconciled at the 30-year endpoint. Policy 4 is excluded from this treatment as

premiums are collected by a private firm.

Statistical significance testing distinguished between policy scheme config sig-

nificance (indicating policy effectiveness versus no policy) and individual parameter

significance (indicating parameter value importance within the policy mechanism).

This analysis yielded 18 down-selected configurations across all eight policies for sub-

sequent comparative evaluation. Table 4.18 provides a summary of Experiment 3.1

results.

Table 4.17: Policy Configuration Parameters

Abbrev. Parameter Abbrev. Parameter
REBATE rebate for refurbishment TAX PCT tax percentage
INIT SUB policy scheme initial sub TAX SHAPE tax shape parameter
OUF annualOUF FINE fine config
REFUND refund condition POLICY EN policy scheme config
PREM annual premium

Configuration Selection Rationale

Each policy yielded 1-3 configurations with distinct performance profiles. Configu-

ration x.1 variants consistently prioritized cost-neutrality with moderate parameters.

Configuration x.2 variants emphasized environmental performance through more ag-

gressive settings, accepting higher costs for superior emissions outcomes. Config-

uration x.3 variants (where present) explored intermediate positions or specialized
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objectives such as increased refurbishment throughput.

Policy 1 (OUF with Refund): OUF was significant for all cost and emissions

percentiles. Configuration 1.1 (OUF=$50k, no rebate/subsidy, refund=1) achieved

cost-neutrality. Configuration 1.2 (OUF=$75k) maximized emissions reduction while

accepting higher costs.

Policy 2 (Subsidy with Rebate): POLICY EN was significant for average emis-

sions, while individual parameters affected only extreme percentiles. Configuration

2.1 (REBATE=$250k, INIT SUB=1, OUF=$2.5k) established a cost-neutral config-

uration. Configuration 2.2 (OUF=$25k) pursued deorbit reductions through tenfold

OUF increase.

Policy 3 (Fine-Based): POLICY EN was significant for average emissions; FINE

affected 95th percentile only. Configuration 3.1 (REBATE=$250k, INIT SUB=1,

FINE=$100k) balanced cost and emissions. Configuration 3.2 (FINE=$10M) maxi-

mized enforcement through severe penalties for worst-case scenarios.

Policy 4 (Annual Premium): POLICY EN was significant for average and 5th

percentile emissions, but premium rates showed limited parameter significance. Con-

figuration 4.1 (PREM=0.001) achieved superior cost-weighted performance, reflecting

that benefits derive from the policy mechanism itself rather than premium intensity.

Policy 5 (Tax-Based): REBATE was significant across all cost percentiles, mak-

ing it critical for this policy. TAX PCT affected average and 5th percentile emissions.

Configuration 5.1 (REBATE=$250k, TAX PCT=0.001) achieved best cost-weighted

balance. Configuration 5.2 (TAX PCT=0.005) prioritized deorbit reductions through

aggressive taxation. Configuration 5.3 (no rebate, TAX PCT=0.003) explored inter-

mediate emissions-focused approach.
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Policy 6 (Tax and Fine): TAX PCT was significant for average and 95th per-

centile emissions; FINE affected 5th and 95th percentiles. Configuration 6.1 (RE-

BATE=$250k, INIT SUB=1, TAX PCT=0.001, FINE=$500k) leveraged complemen-

tary enforcement: taxes for average performance, fines for extreme cases.

Policy 7 (OUF-Fine): This policy had the broadest observed significance pat-

terns. All parameters were significant for total cost (except REBATE at 95th per-

centile). OUF, REBATE, and FINE were significant for emissions at the 5th and

95th percentiles. Configuration 7.1 (REBATE=$250k, INIT SUB=1, FINE=$500k,

OUF=$2.5k) established a cost-focused configuration with synergistic OUF-fine com-

bination. Configuration 7.2 (FINE=$1M, OUF=$5k) targeted extreme percentile

emissions. Configuration 7.3 (FINE=$10M, OUF=$25k) focused on reducing deor-

bits through aggressive dual enforcement.

Policy 8 (Premium with Superfund): Unlike Policy 4, this policy’s collected

premiums contribute to a subsidy fund. REBATE was significant for average costs;

PREM affected only 5th percentile emissions. Configuration 8.1 (REBATE=$250k,

INIT SUB=1, PREM=0.001) represented a cost-superior configuration. Configura-

tion 8.2 (PREM=0.02) maximized refurbishment throughput through elevated pre-

mium rates that feed a larger subsidy fund pool.

Key Findings and Implications

Diminishing Returns from Aggressive Interventions: Analysis consistently

revealed that moderate parameter values outperformed extreme settings for cost per-

formance, as expected. Pushing fees or fines beyond certain thresholds yielded di-

minishing marginal benefits, adding costs without proportional sustainability perfor-

mance improvements.

263



Complementary Enforcement Mechanisms: Combined policies (particularly

Policies 6 and 7) demonstrated that pairing continuous economic incentives (taxes,

OUF) with episodic penalties (fines) effectively manage the full performance distribu-

tion. Taxes shape average behavior while fines address extreme cases, creating robust

enforcement coverage.

Parameter Significance Patterns: Refurbishment rebates showed significance

at 95th percentiles across multiple policies, with Policy 5 demonstrating particularly

broad rebate effectiveness. Initial subsidies primarily moderated emissions variability

at extremes rather than shifting central tendencies. Enforcement parameters ex-

hibited distinct roles: fines managed extremes (5th/95th percentiles), taxes affected

average and extreme performance depending on pairing, OUF demonstrated robust

significance across distributions, and premium rates showed limited parameter signif-

icance where policy mechanism itself drove benefits.

Policy Mechanism vs. Parameter Intensity: Several policies (notably 3, 4,

and 8) demonstrated POLICY EN significance where specific parameters did not,

revealing that enabling these policies matters more than fine-tuning parameter val-

ues within tested ranges. This contrasts with Policies 2, 5, 6, and 7, where careful

parameter calibration significantly affects outcomes.

Trade-Off Mapping: The tiered configuration approach (x.1, x.2, x.3 variants)

helped map the cost-priority versus performance trade-off space. Configuration se-

lection provides policymakers with clear choices between maintaining cost-neutrality

with modest gains or accepting higher costs for aggressive environmental outcomes,

with quantified trade-offs for each option.
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Table 4.18: Experiment 3.1 Down-Selection Summary

Policy Description Parameters Tested Config Down-Selected 
Settings

Focus/Objective

Scheme
Policy 1 OUF with Refund 

Conditions
1.1

OUF=50k, 
REBATE=0, 
INIT_SUB=0, 
REFUND=1

Cost-neutral baseline

1.2

OUF=75k, 
REBATE=0, 
INIT_SUB=0, 
REFUND=1

Environmental (max 
emissions reduction)

Policy 2 OUF, Initial Subsidy 
with Rebate 2.1

OUF=2.5k, 
REBATE=250k, 

INIT_SUB=1
Cost-neutral baseline

2.2
OUF=25k, 

REBATE=250k, 
INIT_SUB=1

Reduced deorbits

Policy 3 Fine-Based 
Enforcement 3.1

FINE=100k, 
REBATE=250k, 

INIT_SUB=1

Cost-neutral with 
competitive emissions

3.2
FINE=10M, 

REBATE=250k, 
INIT_SUB=1

Focus on deorbit 
reduction 

Policy 4 Annual Premium REBATE={0}, 
INIT_SUB={0}, 

PREM={0.001, 0.005, 
0.01, 0.025, 0.05, 0.1}

4.1

PREM=0.001, 
REBATE=0, 
INIT_SUB=0

Minimal intervention 
approach

Policy 5 Tax-Based 
Mechanism 5.1

TAX_PCT=0.001, 
REBATE=250k, 

INIT_SUB=0

Cost-neutral with 
efficiency

5.2
TAX_PCT=0.005, 
REBATE=250k, 

INIT_SUB=0
Reduced deorbits

5.3
TAX_PCT=0.003, 

REBATE=0, 
INIT_SUB=0

Intermediate emissions 
focus

Policy 6 Combined Tax & Fine REBATE={0, 250k}, 
INIT_SUB={0, 1}, 
TAX_PCT={0.001, 
0.003, 0.005, 0.01}, 
FINE={100k, 500k, 

1M, 10M}

6.1

TAX_PCT=0.001, 
FINE=500k, 

REBATE=250k, 
INIT_SUB=1

Cost-neutral with 
balanced enforcement

Policy 7 OUF-Fine 
Combination

7.1

OUF=2.5k, 
FINE=500k, 

REBATE=250k, 
INIT_SUB=1

Cost-priority 
configuration

7.2
OUF=5k, FINE=1M, 

REBATE=250k, 
INIT_SUB=1

Emissions performance 
at extremes

7.3

OUF=25k, 
FINE=10M, 

REBATE=250k, 
INIT_SUB=1

Reduced deorbits

Policy 8 Premium-Based 
Incentive 8.1

PREM=0.001, 
REBATE=250k, 

INIT_SUB=1

Cost-neutral with 
subsidy fund

8.2
PREM=0.02, 

REBATE=250k, 
INIT_SUB=1

Maximize refurbishment 
activity

REBATE={0, 250k}, 
INIT_SUB={0, 1}, 

PREM={0.001, 0.005, 
0.01, 0.025, 0.05, 0.1}

OUF={10k, 25k, 50k, 
75k}, REBATE={0, 

250k}, INIT_SUB={0, 
1}, REFUND={1, 2}

REBATE={0, 250k}, 
INIT_SUB={0, 1}, 

OUF={2.5k, 5k, 10k, 
25k}

REBATE={0, 250k}, 
INIT_SUB={0, 1}, 
FINE={100k, 500k, 

1M, 10M}

REBATE={0, 250k}, 
INIT_SUB={0, 1}, 
TAX_PCT={0.001, 
0.003, 0.005, 0.01}

REBATE={0, 250k}, 
INIT_SUB={0, 1}, 
FINE={100k, 500k, 

1M, 10M}, 
OUF={2.5k, 5k, 10k, 

25k}
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These 18 down-selected configurations advance to Experiment 3.2 for compre-

hensive head-to-head comparison under identical simulation conditions with larger

scenario batches. The down-selection approach enabled efficient screening of the vast

parameter space while ensuring that top-performing configurations from each policy

scheme receive rigorous large-scale evaluation. Experiment 3.2 incorporates infras-

tructure upgrade pathway variations (Upg) to assess whether flexible versus inflexible

warehouse upgrade strategies affect relative policy performance across the tested vari-

ants.

4.4.2 Experiment 3.2: Comparison and Analysis for Down-Selected Policies

This section presents comprehensive results of the Value at Risk and Gain (VARG)

analysis combined with statistical significance testing for the selection of policies

from Experiment 3.1 that show promise in improving infrastructure feasibility or

efficiency through either cost-neutral policies or more ambitious policies that seek

to alter infrastructure composition. Table 4.18 describes the down-selected policy

combinations and Table 4.19 details the infrastructure configuration variations.

Configuration Set

Table 4.19: Infrastructure Configurations for Policy Comparison Experiment 3.2 and
3.3

Parameter Values Description

depot config 0, 1 0: No depot/warehouse infrastructure; 1: Depot

enabled (prerequisite for all other advanced con-

figurations)

CAAS config 1 1: CAAS enabled (only when depot config = 1)
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Parameter Values Description

refuelable config 1 1: Refuelable satellites option available (only

when depot config = 1)

upgraded config 0, 1, 2 0: No warehouse upgrades; 1: Upgraded ware-

house option available (only when depot config =

1 and refuelable config = 1); 2: Warehouse up-

grades immediately available

add new wh config 1 1: Allow new warehouse additions (only when de-

pot config = 1)

rpo config 2 2: Satellite RPO immediately available (only

when depot config = 1)

Total configurations per scenario:

• Baseline scenario: 1 configuration (depot config = 0)

• Depot scenarios: 17 policy variants × 3 upgrade variants = 51 configurations

• Total: 52 configurations per scenario replication

The experiment design ensures that each policy is evaluated under identical infras-

tructure conditions (when depot is enabled), with the upgrade flexibility parameter

(upgraded config) providing insight into how different satellite upgrade strategies

interact with policy mechanisms. This configuration enables direct, fair comparison of

policy effectiveness while controlling for infrastructure and operational uncertainties.

VARG Results for Experiment 3.2

The results for Experiment 3.2 are provided in Table 4.21 through Table 4.23. For ex-

periment 3.2, the top-ranked CAAS+policy configuration after 80 scenarios is a policy

3 configuration with 1 depot (D:1, CAAS:1, Rf:1, Upg:0, P:3, RPO:2, Fine:100km,
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Table 4.20: Top Performing Configuration Parameter Settings - Experiment 3.2

Configuration Depot Rf Upg RPO POLICY EN REBATE FINE INIT SUB OUF

0-Warehouse Baseline 0 0 0 0 0 0 0 0 0
Best Cost No-Policy 1 1 0 2 0 0 0 0 0
Best for Total Cost 1 1 0 2 3 250k 100k 0 0
Best for Total Emissions & Weighted Multi-
Objective

1 1 2 2 1 0 0 0 75k

Best for Cost/Refurbish, Cost/Collection 1 1 0 2 7 250k 10M 1 25k
Best for Sats Refurb (Space) 1 1 2 2 7 250k 10M 1 25k
Best for Num Sat Refurb 1 1 1 2 7 250k 10M 1 25k

Rebate: 250k). However, the 0-warehouse baseline, ranked 1st, is the only stable

ranking for the given number of scenarios. Furthermore, this configuration’s 0.43%

increase in total cost compared to the 0-warehouse baseline is too small to be sta-

tistically significant. The only policy configurations present in the top performing

configurations to have a significant cost increase over the 0-warehouse baseline and

top no-policy CAAS configuration are the policy 7 configurations; otherwise, cost is

comparable. Additionally, none of the identified policies offer statistically significant

improvements in emissions compared to the top-cost no-policy configuration.

The results for Experiment 3.2 are provided in Table 4.21 through Table 4.23.

For Experiment 3.2, the top-ranked CAAS+policy configuration after 80 scenarios

is a Policy 3 configuration with 1 depot (D:1, CAAS:1, Ref:1, Upg:0, P:3, RPO:2,

Fine:100k, Rebate:250k). However, the 0-warehouse baseline, ranked 1st, is the only

stable ranking for the given number of scenarios. Furthermore, this configuration’s

0.43% increase in total cost compared to the 0-warehouse baseline, depicted in Fig-

ure 4.10, is too small to be statistically significant. The only policy configurations

present in the top performing configurations to have a significant cost increase over

the 0-warehouse baseline and top no-policy CAAS configuration are the Policy 7 con-

figurations; otherwise, cost is comparable. Additionally, none of the identified policies

offer statistically significant improvements in emissions compared to the top-cost no-

policy configuration.

The top emissions policy configuration, depicted in Figure 4.11, demonstrates com-
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parable cost to both the 0-warehouse baseline and the top no-policy configuration.

It achieves a 7.45% reduction in emissions compared to the 0-warehouse baseline,

which is statistically significant compared to the 0-warehouse baseline (p < 0, 95%

CI: [3.14M, 3.31M], MoE: 2.66%). While this reduction represents an improvement

over the top no-policy configuration, the difference between these two configurations

is not statistically measurable given the number of cases (p = 0.56). However, this

same emissions configuration demonstrates measurably better numbers of refurbished

satellites compared to both the 0-warehouse baseline and the top no-policy configu-

ration, with a 29.47% increase over the top-cost no-policy configuration (p = 0.038,

95% CI: [65, 93], MoE: 16.9%). This is a key distinction from the findings in Experi-

ment 2, where the emissions-superior configuration (with the same refuel and upgrade

settings) did not offer statistically more refurbishments than the non-flexible option.

These results demonstrate how the model was able to cut through the noise and

identify a policy that provides sustainability benefits. While the policy’s emissions im-

provements were too small to measure compared to the no-policy configuration given

the number of cases, it was able to provide greater, measurable rates of refurbishment

compared to the no-policy configuration identified in Experiment 2. This shows how

the model could find a cost-neutral policy capable of improving sustainability metrics

without measurable increases in the total cost over the 30-year simulation period.

Experimental Observation 3.1
The $75,000 OUF scheme that provides a rebate when satellites are collected

provides a cost-neutral policy approach that improves refurbishment through-

put relative to the top no-policy configuration.

The cost-superior CAAS+policy configuration never gains additional warehouses.

If the priority is to grow the OOS infrastructure over the 30-year horizon, variations

of policies 2 and 3 provide the means of expansion, albeit with penalties to total cost.

269



Figure 4.10: Experiment 3.2: Total Cost VARG Plot

Figure 4.11: Experiment 3.2: Total NOx Emissions VARG Plot
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Over the simulated 30-year period, policy (D:1, CAAS:1, Ref:1, Upg:0, P:2, RPO:2,

OUF:2.5e4, Psub:1, Rebate: 2.5e5) creates an average of 7.5 warehouses and has an

avg total cost that is 11.47% higher than the 0-warehouse baseline. In comparison,

the no-policy configuration that starts with 7 warehouses (D:7, CAAS:1, Ref:1, Upg:0,

P:0, RPO:2) is 16.221% more expensive than the 0-warehouse baseline (Welch’s t-test

p-value<0.001). Similarly, policy (D:1, CAAS:1, Ref:1, Upg:0, P:3, RPO:2, Fine:1e7,

Psub:1, Rebate: 2.5e5) creates 4 warehouses on average with an average total cost

that is 5.292% greater than the 0-warehouse baseline, compared to the no-policy

configuration that starts with 4 warehouses (D:4, CAAS:1, Ref:1, Upg:0, P:0, RPO:2)

that has a 7.59% greater average total cost (Welch’s t-test p-value=0.0286). Using

these growth-oriented policies creates a CAAS infrastructure of comparable size over

the 30 year timeline, leveraging the time value of money to reduce total cost. However,

this approach comes with a trade-off, since the grow-to-7 and grow-to-4 configurations

have less emissions benefits and fewer refurbished satellites compared to the initialized

7-warehouse and 4-warehouse configurations. Table 4.21 through Table 4.23 provide a

breakdown of how the growth policies compare to the large, no-policy configurations

in terms of total cost, emissions, and refurbishments.

Experimental Observation 3.2
Policy+flexible warehouse roll-out enables the framework to reach a certain

warehouse number for less total cost compared to initializing the infrastructure

with more warehouses, but comes with less capability to improve emissions and

refurbishments over the 30 years. To make real change in emissions over the

30-year horizon, there need to be more warehouses at the start of the simulation.
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Table 4.21: Experiment 3.2: Total Cost

Top 
Performing 

Metric
Configuration Percentile Total Cost 

Value ($)
Total Cost CI 

Lower
Total Cost CI 

Upper
Total Cost 

MoE%
Total Cost % 

vs Baseline

Total Cost p-
value 

(Baseline)

Total Cost 
Sig? (Baseline)

Total Cost % 
vs Best No-

Policy

Total Cost p-
value (No-

Policy

Total Cost 
Sig? (No-

Policy)

avg 4.46E+09 4.38E+09 4.55E+09 1.905 N/A N/A N/A -0.402 0.758 No

5th 3.98E+09 3.93E+09 4.09E+09 2.025 N/A N/A N/A -2.074 0.758 No

95th 5.12E+09 5.01E+09 5.34E+09 3.232 N/A N/A N/A 0.002 0.758 No

avg 4.48E+09 4.40E+09 4.56E+09 1.773 0.404 0.758 No N/A N/A N/A

5th 4.06E+09 4.03E+09 4.10E+09 0.808 2.118 0.758 No N/A N/A N/A

95th 5.12E+09 4.97E+09 5.33E+09 3.557 -0.002 0.758 No N/A N/A N/A

avg 4.48E+09 4.40E+09 4.56E+09 1.799 0.437 0.741 No 0.033 0.979 No

5th 4.05E+09 4.04E+09 4.09E+09 0.654 1.788 0.741 No -0.323 0.979 No

95th 5.12E+09 4.91E+09 5.35E+09 4.298 0.008 0.741 No 0.010 0.979 No

avg 4.55E+09 4.45E+09 4.65E+09 2.246 1.926 0.200 No 1.516 0.298 No

5th 4.08E+09 4.08E+09 4.13E+09 0.633 2.626 0.200 No 0.497 0.298 No

95th 5.20E+09 4.98E+09 5.93E+09 9.151 1.557 0.200 No 1.559 0.298 No

avg 5.26E+09 5.18E+09 5.35E+09 1.691 17.998 0.000 Yes 17.523 0.000 Yes

5th 4.77E+09 4.69E+09 4.81E+09 1.255 19.974 0.000 Yes 17.486 0.000 Yes

95th 5.90E+09 5.77E+09 6.04E+09 2.267 15.120 0.000 Yes 15.122 0.000 Yes

avg 5.37E+09 5.27E+09 5.46E+09 1.766 20.297 0.000 Yes 19.813 0.000 Yes

5th 4.84E+09 4.79E+09 4.88E+09 0.934 21.717 0.000 Yes 19.193 0.000 Yes

95th 6.09E+09 5.86E+09 6.15E+09 2.386 18.904 0.000 Yes 18.906 0.000 Yes

avg 5.32E+09 5.23E+09 5.41E+09 1.681 19.228 0.000 Yes 18.749 0.000 Yes

5th 4.80E+09 4.75E+09 4.89E+09 1.424 20.716 0.000 Yes 18.212 0.000 Yes

95th 5.96E+09 5.79E+09 6.11E+09 2.719 16.370 0.000 Yes 16.373 0.000 Yes

avg 4.97E+09 4.89E+09 5.05E+09 1.613 11.469 0.000 Yes 11.020 0.000 Yes

5th 4.52E+09 4.40E+09 4.58E+09 1.984 13.765 0.000 Yes 11.405 0.000 Yes

95th 5.61E+09 5.41E+09 5.75E+09 3.010 9.547 0.000 Yes 9.549 0.000 Yes

avg 4.70E+09 4.61E+09 4.79E+09 1.921 5.292 0.000 Yes 4.868 0.000 Yes

5th 4.25E+09 4.22E+09 4.26E+09 0.500 6.892 0.000 Yes 4.676 0.000 Yes

95th 5.40E+09 5.21E+09 5.53E+09 2.952 5.382 0.000 Yes 5.384 0.000 Yes

avg 5.19E+09 5.06E+09 5.31E+09 2.489 16.221 0.000 Yes 15.754 0.000 Yes

5th 4.77E+09 4.70E+09 4.85E+09 1.529 20.081 0.000 Yes 17.590 0.000 Yes

95th 5.84E+09 5.50E+09 6.19E+09 5.938 13.948 0.000 Yes 13.951 0.000 Yes

avg 4.80E+09 4.67E+09 4.93E+09 2.766 7.593 0.000 Yes 7.160 0.000 Yes

5th 4.42E+09 4.38E+09 4.44E+09 0.640 11.090 0.000 Yes 8.786 0.000 Yes

95th 5.49E+09 5.15E+09 5.89E+09 6.777 7.192 0.000 Yes 7.194 0.000 Yes

7 Initial 
Warehouses, 

no policy

d:7 | up:0 | rf:1 | rpo:2 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

4 Initial 
Warehouses, 

no policy

d:4 | up:0 | rf:1 | rpo:2 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

Best for Total 
Num Sat Refurb

d:1 | up:1 | rf:1 | rpo:2 | 
P:7 | OUF:2.5e4 | 

Fine:10M | Rebate:250k

Grow-to-7 
Warehouses

d:1 | up:0 | rf:1 | rpo:2 | 
P:2 | OUF:2.5e4 | Fine:0 | 

Rebate:250k

Grow-to-4 
Warehouses

d:1 | up:0 | rf:1 | rpo:2 | 
P:3 | OUF:0 | Fine:10M | 

Rebate:250k

Best for Total 
Emissions &  

Weighted 
Multi-Objective

d:1 | up:2 | rf:1 | rpo:2 | 
P:1 | OUF:7.5e4 | R:1 | 

Fine:0 | Rebate:0

Best for 
Cost/Refurb,  
Cost/Collect

d:1 | up:0 | rf:1 | rpo:2 | 
P:7 | OUF:2.5e4 | 

Fine:10M | Rebate:250k

Best for Sats 
Refurb. In 

Space

d:1 | up:2 | rf:1 | rpo:2 | 
P:7 | OUF:2.5e4 | 

Fine:10M | Rebate:250k

0-Warehouse 
Baseline

d:0 | up:0 | rf:0 | rpo:0 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

Best Cost No-
Policy

d:1 | up:0 | rf:1 | rpo:2 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

Best for Total 
Cost

d:1 | up:0 | rf:1 | rpo:2 | 
P:3 | OUF:2.5e4 | 

Fine:100k | Rebate:250k
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Table 4.22: Experiment 3.2: Total NOx Emissions

Top 
Performing 

Metric
Configuration Percentile

Total 
Emissions 

Value

Total 
Emissions CI 

Lower

Total 
Emissions CI 

Upper

Total 
Emissions 

MoE%

Total 
Emissions % 

vs Baseline

Total 
Emissions p-

value 
(Baseline)

Total 
Emissions 

Sig? (Baseline)

Total 
Emissions % 
vs Best No-

Policy

Total 
Emissions p-

value (No-
Policy)

Total 
Emissions 
Sig? (No-

Policy)

avg 3.48E+06 3.41E+06 3.56E+06 2.083 N/A N/A N/A 6.860 0.000 Yes

5th 2.90E+06 2.83E+06 3.04E+06 3.585 N/A N/A N/A 14.048 0.000 Yes

95th 3.94E+06 3.82E+06 3.98E+06 1.936 N/A N/A N/A 3.574 0.000 Yes

avg 3.26E+06 3.17E+06 3.35E+06 2.748 -6.419 0.000 Yes N/A N/A N/A

5th 2.54E+06 2.32E+06 2.75E+06 8.564 -12.318 0.000 Yes N/A N/A N/A

95th 3.81E+06 3.71E+06 3.87E+06 2.105 -3.451 0.000 Yes N/A N/A N/A

avg 3.26E+06 3.17E+06 3.35E+06 2.793 -6.416 0.000 Yes 0.003 0.999 No

5th 2.50E+06 2.36E+06 2.71E+06 7.026 -13.554 0.000 Yes -1.410 0.999 No

95th 3.83E+06 3.69E+06 3.97E+06 3.611 -2.989 0.000 Yes 0.478 0.999 No

avg 3.22E+06 3.14E+06 3.31E+06 2.662 -7.446 0.000 Yes -1.097 0.567 No

5th 2.52E+06 2.38E+06 2.64E+06 5.061 -13.070 0.000 Yes -0.858 0.567 No

95th 3.74E+06 3.67E+06 3.78E+06 1.481 -5.079 0.000 Yes -1.687 0.567 No

avg 3.30E+06 3.24E+06 3.37E+06 2.072 -5.114 0.001 Yes 1.396 0.423 No

5th 2.70E+06 2.54E+06 2.89E+06 6.603 -6.625 0.001 Yes 6.492 0.423 No

95th 3.73E+06 3.66E+06 3.77E+06 1.588 -5.330 0.001 Yes -1.947 0.423 No

avg 3.33E+06 3.26E+06 3.40E+06 2.111 -4.402 0.003 Yes 2.156 0.221 No

5th 2.72E+06 2.65E+06 2.86E+06 3.860 -6.088 0.003 Yes 7.105 0.221 No

95th 3.76E+06 3.68E+06 3.92E+06 3.243 -4.575 0.003 Yes -1.165 0.221 No

avg 3.27E+06 3.20E+06 3.35E+06 2.226 -6.022 0.000 Yes 0.424 0.812 No

5th 2.65E+06 2.57E+06 2.89E+06 6.068 -8.459 0.000 Yes 4.401 0.812 No

95th 3.72E+06 3.64E+06 3.80E+06 2.167 -5.710 0.000 Yes -2.340 0.812 No

avg 3.25E+06 3.17E+06 3.33E+06 2.382 -6.673 0.000 Yes -0.271 0.882 No

5th 2.67E+06 2.56E+06 2.78E+06 4.196 -7.629 0.000 Yes 5.347 0.882 No

95th 3.82E+06 3.64E+06 3.88E+06 3.180 -3.131 0.000 Yes 0.332 0.882 No

avg 3.27E+06 3.18E+06 3.35E+06 2.516 -6.207 0.000 Yes 0.227 0.904 No

5th 2.62E+06 2.44E+06 2.73E+06 5.540 -9.639 0.000 Yes 3.055 0.904 No

95th 3.74E+06 3.70E+06 3.80E+06 1.330 -5.171 0.000 Yes -1.782 0.904 No

avg 3.08E+06 2.98E+06 3.18E+06 3.301 -11.648 0.000 Yes -5.587 0.008 Yes

5th 2.54E+06 2.39E+06 2.80E+06 8.079 -12.360 0.000 Yes -0.048 0.008 Yes

95th 3.48E+06 3.32E+06 3.53E+06 2.951 -11.637 0.000 Yes -8.479 0.008 Yes

avg 3.13E+06 3.02E+06 3.25E+06 3.634 -10.052 0.000 Yes -3.882 0.082 No

5th 2.56E+06 2.42E+06 2.80E+06 7.275 -11.560 0.000 Yes 0.864 0.082 No

95th 3.60E+06 3.40E+06 3.70E+06 4.168 -8.619 0.000 Yes -5.352 0.082 No

7 Initial 
Warehouses, 

no policy

d:7 | up:0 | rf:1 | rpo:2 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

4 Initial 
Warehouses, 

no policy

d:4 | up:0 | rf:1 | rpo:2 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

Best for Total 
Num Sat Refurb

d:1 | up:1 | rf:1 | rpo:2 | 
P:7 | OUF:2.5e4 | 

Fine:10M | Rebate:250k

Grow-to-7 
Warehouses

d:1 | up:0 | rf:1 | rpo:2 | 
P:2 | OUF:2.5e4 | Fine:0 | 

Rebate:250k

Grow-to-4 
Warehouses

d:1 | up:0 | rf:1 | rpo:2 | 
P:3 | OUF:0 | Fine:10M | 

Rebate:250k

Best for Total 
Emissions &  

Weighted 
Multi-Objective

d:1 | up:2 | rf:1 | rpo:2 | 
P:1 | OUF:7.5e4 | R:1 | 

Fine:0 | Rebate:0

Best for 
Cost/Refurb,  
Cost/Collect

d:1 | up:0 | rf:1 | rpo:2 | 
P:7 | OUF:2.5e4 | 

Fine:10M | Rebate:250k

Best for Sats 
Refurb. In 

Space

d:1 | up:2 | rf:1 | rpo:2 | 
P:7 | OUF:2.5e4 | 

Fine:10M | Rebate:250k

0-Warehouse 
Baseline

d:0 | up:0 | rf:0 | rpo:0 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

Best Cost No-
Policy

d:1 | up:0 | rf:1 | rpo:2 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

Best for Total 
Cost

d:1 | up:0 | rf:1 | rpo:2 | 
P:3 | OUF:2.5e4 | 

Fine:100k | Rebate:250k
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Table 4.23: Experiment 3.2: Number of Refurbishments

Top 
Performing 

Metric
Configuration Percentile Num Sat 

Refurb Value

Num Sat 
Refurb CI 

Lower

Num Sat 
Refurb CI 

Upper

Num Sat 
Refurb MoE%

Num Sat 
Refurb % vs 

No-Policy

Num Sat 
Refurb p-

value (No-
Policy)

Num Sat 
Refurb Sig? 
(No-Policy)

avg 0.00 0.00 0.00 - N/A N/A N/A

5th 0.00 0.00 0.00 - N/A N/A N/A

95th 0.00 0.00 0.00 - N/A N/A N/A

avg 61.16 50.37 71.95 17.643 N/A N/A N/A

5th 0.00 0.00 0.00 - N/A N/A N/A

95th 145.70 125.00 164.00 13.384 N/A N/A N/A

avg 61.66 51.19 72.14 16.985 0.817 0.947 No

5th 0.00 0.00 3.90 - - - No

95th 159.35 110.00 176.00 20.709 9.369 0.947 No

avg 79.19 65.80 92.58 16.907 29.471 0.039 Yes

5th 29.70 9.00 38.00 48.822 inf 0.039 Yes

95th 140.20 128.15 175.00 16.708 -3.775 0.039 Yes

avg 273.10 252.82 293.38 7.426 346.515 0.000 Yes

5th 114.50 63.00 170.00 46.725 inf 0.000 Yes

95th 403.20 387.55 444.00 7.000 176.733 0.000 Yes

avg 244.09 221.47 266.70 9.265 299.080 0.000 Yes

5th 75.70 44.00 118.85 49.439 inf 0.000 Yes

95th 401.30 369.30 433.00 7.937 175.429 0.000 Yes

avg 283.34 262.34 304.34 7.412 363.254 0.000 Yes

5th 66.95 57.00 156.15 74.050 inf 0.000 Yes

95th 401.95 381.15 445.00 7.943 175.875 0.000 Yes

avg 193.13 178.42 207.83 7.616 215.757 0.000 Yes

5th 88.15 69.00 109.75 23.114 inf 0.000 Yes

95th 298.30 273.10 333.00 10.040 104.736 0.000 Yes

avg 119.81 104.57 135.06 12.725 95.892 0.000 Yes

5th 34.70 24.00 46.80 32.853 inf 0.000 Yes

95th 228.10 209.00 256.00 10.302 56.555 0.000 Yes

avg 235.65 187.13 284.17 20.590 285.280 0.000 Yes

5th 0.65 0.00 84.95 6534.615 inf 0.000 Yes

95th 425.05 381.35 492.00 13.016 191.730 0.000 Yes

avg 198.18 161.08 235.27 18.719 224.016 0.000 Yes

5th 18.85 0.00 89.81 238.223 inf 0.000 Yes

95th 344.75 282.45 422.00 20.239 136.616 0.000 Yes

7 Initial 
Warehouses, 

no policy

d:7 | up:0 | rf:1 | rpo:2 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

4 Initial 
Warehouses, 

no policy

d:4 | up:0 | rf:1 | rpo:2 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

Best for Total 
Num Sat Refurb

d:1 | up:1 | rf:1 | rpo:2 | 
P:7 | OUF:2.5e4 | 

Fine:10M | Rebate:250k

Grow-to-7 
Warehouses

d:1 | up:0 | rf:1 | rpo:2 | 
P:2 | OUF:2.5e4 | Fine:0 | 

Rebate:250k

Grow-to-4 
Warehouses

d:1 | up:0 | rf:1 | rpo:2 | 
P:3 | OUF:0 | Fine:10M | 

Rebate:250k

Best for Total 
Emissions &  

Weighted 
Multi-Objective

d:1 | up:2 | rf:1 | rpo:2 | 
P:1 | OUF:7.5e4 | R:1 | 

Fine:0 | Rebate:0

Best for 
Cost/Refurb,  
Cost/Collect

d:1 | up:0 | rf:1 | rpo:2 | 
P:7 | OUF:2.5e4 | 

Fine:10M | Rebate:250k

Best for Sats 
Refurb. In 

Space

d:1 | up:2 | rf:1 | rpo:2 | 
P:7 | OUF:2.5e4 | 

Fine:10M | Rebate:250k

0-Warehouse 
Baseline

d:0 | up:0 | rf:0 | rpo:0 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

Best Cost No-
Policy

d:1 | up:0 | rf:1 | rpo:2 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

Best for Total 
Cost

d:1 | up:0 | rf:1 | rpo:2 | 
P:3 | OUF:2.5e4 | 

Fine:100k | Rebate:250k
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Overall, comparing these two expansion-promoting policies with no-policy config-

urations reveals the cost benefits of flexible warehouse deployment. This observation

motivates the following experimentation set, which varies the combinations of down-

selected policies with the number of initial warehouses.

4.4.3 Experiment 3.3: Policy and Flexibility for Configurations with Greater Than

1 Initial Depot

Experiment 3.3 takes a further down-selection of policies from experiment 3.2 (policies

1 and 7) and expand the design space to enable policy for 1, 4, or 7 initial warehouses

as well as compare flexibly upgraded satellites with pre-initialized satellites upgrades

(Rf 1 to Rf 1,2). Since the number of depots is a driving contributor of emissions

reduction, this experiment reveals the potential for policy to enable a larger number

of initial depots in a manner that is more financially palatable than would be possible

without government intervention. Table 4.24 contains the details on the down-selected

policy configurations. Over 70 uncertain scenarios, the infrastructure is varied in the

same manner as before, as detailed in Table 4.19.

Configuration Set

Table 4.24: Downselected Parameter Configurations for Policy Comparison Experi-
ment 3.3

Policy Rebate Initial OUF Rebate Premium Tax Tax Fine
Scheme Refurb Sub Cond. % Shape

0 (Baseline) 0 0 0 0 0 0 0 0

1.1 0 0 50k 0 0 0 0 0
1.2 0 0 75k 0 0 0 0 0

7.1 250k 1 2.5k 0 0 0 0 500k
7.2 250k 1 5k 0 0 0 0 1M
7.3 250k 1 25k 0 0 0 0 10M

Bold values indicate active policy parameters. k = thousand, M = million.
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VARG Results for Experiment 3.3

Comparing the various configurations in experiment 3.3, the configuration with 4 ini-

tial depots and policy scheme 1 (D:4, CAAS:1, Ref:1, Upg:0, P:1, RPO:2, OUF:5e4)

provides the best weighted multi-objective result cost compared to other policy con-

figurations when the priority is 60/40 for total cost vs total emissions. Relative to

the 0-warehouse baseline, this configuration shows a +7.80% [95% CI: [4.78B,4.93B],

%MoE:1.52] increase in total average cost and -9.94% decrease in average emissions

[95% CI: [3.06M,3.21M], %MoE:2.36]. The difference in cost is statistically signifi-

cant compared to both the 0-warehouse baseline (p<0.001) and top cost no-policy

configuration (p<0.001 for D:1, CAAS:1, Ref:1, Upg:0, P:0, RPO:2) while the differ-

ence in emissions is statistically significant for 0-warehouse baseline (p<0.001) but

marginally significant for the top cost no-policy configuration (p=0.073).

This configuration demonstrates sustainability improvements over its 1-depot vari-

ant, (D:1, CAAS:1, Ref:1, Upg:0, P:1, RPO:2, OUF:5e4), achieving greater average

emission reductions (-9.94% decrease vs. -6.86% with p=0.0058 from Welch’s t-test)

while refurbishing substantially more satellites (262 vs. 72 with p<0.001). These sus-

tainability benefits do come at a cost however, with the best weighted multi-objective

configurations costing 7.81% more than the 0-warehouse baseline and the 1-depot

variant costing about the same as the 0-warehouse baseline.

Table 4.25: Top Performing Configuration Parameter Settings - Experiment 3.3

Configuration Depot Active Rf Upg Pol RPO Rebate Fine Sub OUF CAAS

0-Warehouse Baseline 0 0 0 0 0 0 0 0 0 0 0
Best Cost No-Policy 1 1 1 0 0 2 0 0 0 0 0
Best for Total Cost 1 1 1 0 1 2 0 0 0 75k 1
Best for Emissions & Best Emis-
sions Savings/Cost

7 1 1 0 1 2 0 0 0 50k 1

Best for Cost/Refurbish 4 1 1 1 7 2 250k 10M 1 25k 0
Best for Sats Refurb. In Space 7 1 1 2 7 2 250k 10M 1 25k 0
Best for Total Num Sat Refurb &
Cost/Collection

7 1 1 0 7 2 250k 10M 1 25k 0

Best for Weighted Multi-
Objective

4 1 1 0 1 2 0 0 0 50k 1
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This policy configuration also outperforms its no-policy equivalent (D:4, CAAS:1,

Ref:1, Upg:0, P:0) in terms of sustainability. While the policy version shows only

slight differences in emissions and cost (7.80% vs. 7.82% increase in average cost

compared to the 0-warehouse baseline; -9.94$ vs. -8.81% decrease in emissions com-

pared to the 0-warehouse baseline with comparative p-value=0.3 from Welch’s t-test),

it delivers far more average total refurbishments (262 versus 194 with p<0.001) and

achieves a lower cost per refurbishment (-95.79% vs. -79.45% decrease compared to

top cost no-policy configuration). This demonstrates how the same cost-neutral policy

that encouraged greater throughput in the 1-depot variation provides similar benefits

for the 4-depot configuration. Starting with 4 depots yields greater sustainability

benefits while the policy enhances throughput and refurbishment cost efficiency com-

pared to the no-policy scenario—all without increasing costs relative to the 4-depot

baseline.

While more aggressive configurations, such as starting with 7 depots and applying

policy scheme 7, refurbish many more satellites and deliver slightly better emissions,

they cost substantially more (16%-36%). An initial configuration of 4 warehouses

emerges as a reasonable balance between emissions goals and cost feasibility. This

experiment illustrates the diminishing marginal returns in emission reduction and

refurbishment increase that larger servicing infrastructures provide.

Both the grow-to-4 policy configuration from experiment 3.2 and the initial-4-with-

cost-neutral-policy configuration demonstrate measurable improvements over the 4-

depot laissez-faire approach. The choice between them depends on stakeholder pri-

orities and whether the government can subsidize the cost difference or if sufficient

secondary revenue opportunities exist. The 7.80% cost difference represents approxi-

mately $350 million, indicating the necessary budget for subsidies or secondary rev-

enue to close the business case for a 4-warehouse servicing infrastructure. Future work

could explore dynamic policy application—for instance, transitioning from a growth-
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oriented policy to a cost-neutral policy once the servicing infrastructure matures.

Figure 4.12 shows the emissions vs. total costs pareto frontier for all Experiment

3.3 configurations, identifying the previously highlighted (D:1, C:1, Rf:1, Up:0, RP:2,

P:1, OUF:75k) and (D:4, C:1, Rf:1, Up:0, RP:2, P:1, OUF:50k) configurations as

pareto-optimal points. The frontier denoted by the black curve shows the main fron-

tier with all configuration points while the purple dotted frontier shows only no-policy

configurations. This shows the modest shift downwards in the plot afforded by policy

implementation, especially for 4 and 7 initial depots, which represents further NOx

decrease for the same cost.

Furthermore, this plot illustrates the diminishing returns in NOX emission reduc-

tions as more warehouses are added compared to the increase in total costs. The

nearly vertical line connecting the 0-warehouse baseline with the D1 configuration

clearly depicts the cost-parity that a single depot+cost-neutral policy configuration

has with the baseline. It is worthwhile to note that all pareto optimal points feature

Rf=1 and Up=0, showing the value of flexible satellite upgrades and the preference

for Earth-based refurbishing over space-based refurbishing.

Figure 4.12: Pareto Frontier: Total NOx Emissions (kg) vs. Total Costs ($)
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Figure 4.13: Pareto Frontier: Total Satellite Refurbishments vs. Total Costs ($)

Similarly, Figure 4.13 illustrates an upward shift in the refurbishment vs. cost

Pareto frontier when policy is included in the design space. Variations of Policy 1

dominate the majority of Pareto frontier. Just as it was in the emissions vs. cost

Pareto frontier, Rf=1 and Up=0 are featured in nearly every Pareto optimal point.

Experimental Observation 3.3
The framework mechanics allows the user to compare policy schemes

and identify scenario-dependent reward/penalty schemes that establish

environmentally-beneficial infrastructures in a more economically feasible way

than would occur through laissez-faire development alone. The policies don’t

eliminate costs but they reduce the economic strain of achieving better sustain-

ability outcomes. Furthermore, the framework identifies the necessary dual-use

project budget that would close the business case gap for larger infrastructures.
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Table 4.26: Experiment 3.3: Total Cost

Top 
Performing 

Metric
Configuration Percentile Total Cost 

Value ($)
Total Cost CI 

Lower
Total Cost CI 

Upper
Total Cost 

MoE%
Total Cost % 

vs Baseline

Total Cost p-
value 

(Baseline)

Total Cost 
Sig? (Baseline)

Total Cost % 
vs Best No-

Policy

Total Cost p-
value (No-

Policy

Total Cost 
Sig? (No-

Policy)

avg 4.50E+09 4.43E+09 4.58E+09 1.702 N/A N/A N/A -0.322 0.780 No

5th 4.02E+09 3.98E+09 4.14E+09 1.948 N/A N/A N/A -2.534 0.780 No

95th 5.11E+09 4.84E+09 5.12E+09 2.708 N/A N/A N/A 1.276 0.780 No

avg 4.52E+09 4.45E+09 4.59E+09 1.547 0.323 0.780 No N/A N/A N/A

5th 4.12E+09 4.05E+09 4.15E+09 1.213 2.600 0.780 No N/A N/A N/A

95th 5.05E+09 4.77E+09 5.13E+09 3.633 -1.260 0.780 No N/A N/A N/A

avg 4.85E+09 4.78E+09 4.93E+09 1.518 7.804 0.000 Yes 7.457 0.000 Yes

5th 4.11E+09 4.03E+09 4.15E+09 1.426 2.351 0.887 No -0.242 0.887 No

95th 5.05E+09 4.78E+09 5.12E+09 3.395 -1.122 0.887 No 0.140 0.887 No

avg 4.52E+09 4.45E+09 4.59E+09 1.542 0.332 0.774 No 0.009 0.994 No

5th 4.80E+09 4.76E+09 4.88E+09 1.251 19.353 0.000 Yes 16.329 0.000 Yes

95th 5.73E+09 5.57E+09 5.78E+09 1.825 12.047 0.000 Yes 13.477 0.000 Yes

avg 4.84E+09 4.77E+09 4.92E+09 1.507 7.618 0.000 Yes 7.272 0.000 Yes

5th 5.22E+09 5.15E+09 5.29E+09 1.383 29.851 0.000 Yes 26.561 0.000 Yes

95th 6.30E+09 6.08E+09 6.31E+09 1.825 23.307 0.000 Yes 24.881 0.000 Yes

avg 6.13E+09 6.04E+09 6.21E+09 1.358 36.116 0.000 Yes 35.678 0.000 Yes

5th 5.62E+09 5.44E+09 5.67E+09 2.087 39.725 0.000 Yes 36.184 0.000 Yes

95th 6.67E+09 6.56E+09 6.71E+09 1.124 30.588 0.000 Yes 32.255 0.000 Yes

avg 6.00E+09 5.92E+09 6.08E+09 1.314 33.271 0.000 Yes 32.842 0.000 Yes

5th 5.53E+09 4.35E+09 4.45E+09 1.132 10.223 0.000 Yes 7.430 0.000 Yes

95th 6.55E+09 5.15E+09 5.43E+09 2.621 5.262 0.000 Yes 6.606 0.000 Yes

avg 4.85E+09 4.78E+09 4.93E+09 1.518 7.804 0.000 Yes 7.457 0.000 Yes

5th 4.41E+09 4.36E+09 4.48E+09 1.361 9.634 0.000 Yes 6.857 0.000 Yes

95th 5.35E+09 5.21E+09 5.47E+09 2.385 4.689 0.000 Yes 6.025 0.000 Yes

avg 4.52E+09 4.45E+09 4.59E+09 1.542 0.332 0.774 No 0.009 0.994 No

5th 4.13E+09 4.04E+09 4.15E+09 1.289 2.736 0.774 No 0.133 0.994 No

95th 5.04E+09 4.78E+09 5.12E+09 3.387 -1.397 0.774 No -0.138 0.994 No

avg 4.84E+09 4.77E+09 4.92E+09 1.507 7.618 0.000 Yes 7.272 0.000 Yes

5th 4.43E+09 4.35E+09 4.45E+09 1.132 10.223 0.000 Yes 7.430 0.000 Yes

95th 5.38E+09 5.15E+09 5.43E+09 2.621 5.262 0.000 Yes 6.606 0.000 Yes

Weighted 
Multi-Obj (No-
Policy Variant)

d:4 | up:0 | rf:1 | rpo:2 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

Best for Num 
Sat Refurb and 
Cost/Collectio

n

d:7 | up:0 | rf:1 | rpo:2 | 
P:7 | OUF:2.5e4 | 

Fine:10M | Rebate:250k

Weighted 
Multi-Objective

d:4 | up:0 | rf:1 | rpo:2 | 
P:1 | OUF:5e4 | R:1 | 

Fine:0 | Rebate:0

Weighted 
Multi-Obj (1-

Depot Variant)

d:1 | up:0 | rf:1 | rpo:2 | 
P:1 | OUF:5e4 | R:1 | 

Fine:0 | Rebate:0

Best for Total 
Emissions

d:7 | up:0 | rf:1 | rpo:2 | 
P:1 | OUF:5e4 | R:1 | 

Fine:0 | Rebate:0

Optimal for 
Cost/Refurbish

d:4 | up:1 | rf:1 | rpo:2 | 
P:7 | OUF:2.5e4 | 

Fine:10M | Rebate:250k

Best for Sats 
Refurb (Space)

d:7 | up:2 | rf:1 | rpo:2 | 
P:7 | OUF:2.5e4 | 

Fine:10M | Rebate:250k

0-Warehouse 
Baseline

d:0 | up:0 | rf:0 | rpo:0 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

Best Cost No-
Policy

d:1 | up:0 | rf:1 | rpo:2 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

Best for Total 
Cost

d:1 | up:0 | rf:1 | rpo:2 | 
P:1 | OUF:7.5e4 | R:1 | 

Fine:0 | Rebate:0
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Table 4.27: Experiment 3.3: Total NOx Emissions

Top 
Performing 

Metric
Configuration Percentile

Total 
Emissions 

Value

Total 
Emissions CI 

Lower

Total 
Emissions CI 

Upper

Total 
Emissions 

MoE%

Total 
Emissions % 

vs Baseline

Total 
Emissions p-

value 
(Baseline)

Total 
Emissions 

Sig? (Baseline)

Total 
Emissions % 
vs Best No-

Policy

Total 
Emissions p-

value (No-
Policy)

Total 
Emissions 
Sig? (No-

Policy)

avg 3.49E+06 3.42E+06 3.56E+06 2.004 N/A N/A N/A 7.587 0.000 Yes

5th 3.01E+06 2.98E+06 3.12E+06 2.237 N/A N/A N/A 17.380 0.000 Yes

95th 3.94E+06 3.83E+06 4.01E+06 2.275 N/A N/A N/A 5.170 0.000 Yes

avg 3.24E+06 3.16E+06 3.32E+06 2.556 -7.052 0.000 Yes N/A N/A N/A

5th 2.57E+06 2.49E+06 2.84E+06 6.683 -14.806 0.000 Yes N/A N/A N/A

95th 3.75E+06 3.64E+06 3.84E+06 2.671 -4.916 0.000 Yes N/A N/A N/A

avg 3.14E+06 3.06E+06 3.21E+06 2.355 -9.939 0.000 Yes -3.106 0.073 No

5th 2.64E+06 2.52E+06 2.88E+06 6.788 -12.475 0.000 Yes 2.736 0.893 No

95th 3.72E+06 3.65E+06 3.87E+06 2.938 -5.592 0.000 Yes -0.711 0.893 No

avg 3.25E+06 3.17E+06 3.32E+06 2.424 -6.858 0.000 Yes 0.208 0.906 No

5th 2.63E+06 2.43E+06 2.74E+06 5.785 -12.788 0.000 Yes 2.369 0.000 Yes

95th 3.40E+06 3.36E+06 3.46E+06 1.452 -13.832 0.000 Yes -9.377 0.000 Yes

avg 3.18E+06 3.10E+06 3.25E+06 2.311 -8.814 0.000 Yes -1.896 0.270 No

5th 2.79E+06 2.56E+06 2.87E+06 5.525 -7.578 0.000 Yes 8.485 0.826 No

95th 3.59E+06 3.52E+06 3.80E+06 3.855 -8.990 0.000 Yes -4.285 0.826 No

avg 3.22E+06 3.16E+06 3.27E+06 1.719 -7.678 0.000 Yes -0.673 0.663 No

5th 2.85E+06 2.76E+06 2.90E+06 2.408 -5.487 0.000 Yes 10.939 0.663 No

95th 3.54E+06 3.47E+06 3.67E+06 2.853 -10.242 0.000 Yes -5.601 0.663 No

avg 3.09E+06 3.04E+06 3.15E+06 1.844 -11.266 0.000 Yes -4.534 0.004 Yes

5th 2.68E+06 2.49E+06 2.75E+06 5.029 -13.947 0.000 Yes 1.009 0.270 No

95th 3.48E+06 3.52E+06 3.64E+06 1.582 -8.603 0.000 Yes -3.878 0.270 No

avg 3.14E+06 3.06E+06 3.21E+06 2.355 -9.939 0.000 Yes -3.106 0.073 No

5th 2.66E+06 2.45E+06 2.78E+06 6.265 -11.579 0.000 Yes 3.788 0.073 No

95th 3.60E+06 3.51E+06 3.67E+06 2.263 -8.803 0.000 Yes -4.088 0.073 No

avg 3.25E+06 3.17E+06 3.32E+06 2.424 -6.858 0.000 Yes 0.208 0.906 No

5th 2.61E+06 2.46E+06 2.82E+06 6.795 -13.371 0.000 Yes 1.685 0.906 No

95th 3.72E+06 3.61E+06 3.78E+06 2.232 -5.781 0.000 Yes -0.910 0.906 No

avg 3.18E+06 3.10E+06 3.25E+06 2.311 -8.814 0.000 Yes -1.896 0.270 No

5th 2.59E+06 2.49E+06 2.75E+06 5.029 -13.947 0.000 Yes 1.009 0.270 No

95th 3.61E+06 3.52E+06 3.64E+06 1.582 -8.603 0.000 Yes -3.878 0.270 No

Weighted 
Multi-Obj (No-
Policy Variant)

d:4 | up:0 | rf:1 | rpo:2 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

Best for Num 
Sat Refurb and 
Cost/Collectio

n

d:7 | up:0 | rf:1 | rpo:2 | 
P:7 | OUF:2.5e4 | 

Fine:10M | Rebate:250k

Weighted 
Multi-Objective

d:4 | up:0 | rf:1 | rpo:2 | 
P:1 | OUF:5e4 | R:1 | 

Fine:0 | Rebate:0

Weighted 
Multi-Obj (1-

Depot Variant)

d:1 | up:0 | rf:1 | rpo:2 | 
P:1 | OUF:5e4 | R:1 | 

Fine:0 | Rebate:0

Best for Total 
Emissions

d:7 | up:0 | rf:1 | rpo:2 | 
P:1 | OUF:5e4 | R:1 | 

Fine:0 | Rebate:0

Optimal for 
Cost/Refurbish

d:4 | up:1 | rf:1 | rpo:2 | 
P:7 | OUF:2.5e4 | 

Fine:10M | Rebate:250k

Best for Sats 
Refurb (Space)

d:7 | up:2 | rf:1 | rpo:2 | 
P:7 | OUF:2.5e4 | 

Fine:10M | Rebate:250k

0-Warehouse 
Baseline

d:0 | up:0 | rf:0 | rpo:0 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

Best Cost No-
Policy

d:1 | up:0 | rf:1 | rpo:2 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

Best for Total 
Cost

d:1 | up:0 | rf:1 | rpo:2 | 
P:1 | OUF:7.5e4 | R:1 | 

Fine:0 | Rebate:0

281



Table 4.28: Experiment 3.3: Number of Refurbishments

Top 
Performing 

Metric
Configuration Percentile Num Sat 

Refurb Value

Num Sat 
Refurb CI 

Lower

Num Sat 
Refurb CI 

Upper

Num Sat 
Refurb MoE%

Num Sat 
Refurb % vs 

Best No-
Policy

Num Sat 
Refurb p-

value (No-
Policy)

Num Sat 
Refurb Sig? 
(No-Policy)

avg 0.00E+00 0.00E+00 0.00E+00 N/A N/A N/A N/A

5th 0.00E+00 0.00E+00 0.00E+00 N/A N/A N/A N/A

95th 0.00E+00 0.00E+00 0.00E+00 N/A N/A N/A N/A

avg 5.75E+01 4.75E+01 6.75E+01 17.402 N/A N/A N/A

5th 0.00E+00 0.00E+00 1.69E+01 - N/A N/A N/A

95th 1.45E+02 9.93E+01 1.61E+02 21.327 N/A N/A N/A

avg 2.62E+02 2.46E+02 2.78E+02 6.218 355.752 0.000 Yes

5th 1.00E+01 9.00E+00 3.53E+01 131.250 inf 0.011 Yes

95th 1.55E+02 1.31E+02 1.72E+02 13.306 7.155 0.011 Yes

avg 7.16E+01 6.22E+01 8.11E+01 13.197 24.596 0.042 Yes

5th 2.13E+02 1.19E+02 2.68E+02 35.036 inf 0.000 Yes

95th 4.57E+02 4.32E+02 4.75E+02 4.717 216.212 0.000 Yes

avg 1.94E+02 1.76E+02 2.13E+02 9.567 238.186 0.000 Yes

5th 2.63E+02 1.75E+02 3.12E+02 26.138 inf 0.000 Yes

95th 5.25E+02 4.93E+02 5.76E+02 7.883 263.083 0.000 Yes

avg 3.79E+02 3.59E+02 3.98E+02 5.139 559.081 0.000 Yes

5th 2.35E+02 1.61E+02 3.00E+02 29.556 inf 0.000 Yes

95th 4.83E+02 4.61E+02 5.61E+02 10.302 234.186 0.000 Yes

avg 4.12E+02 3.91E+02 4.33E+02 5.090 616.124 0.000 Yes

5th 2.56E+02 3.50E+01 1.00E+02 38.770 inf 0.000 Yes

95th 5.28E+02 2.80E+02 3.36E+02 9.167 112.859 0.000 Yes

avg 2.62E+02 2.46E+02 2.78E+02 6.218 355.752 0.000 Yes

5th 1.60E+02 1.40E+02 1.81E+02 12.789 inf 0.000 Yes

95th 3.81E+02 3.52E+02 3.87E+02 4.664 163.083 0.000 Yes

avg 7.16E+01 6.22E+01 8.11E+01 13.197 24.596 0.042 Yes

5th 1.00E+01 0.00E+00 3.58E+01 179.000 inf 0.042 Yes

95th 1.48E+02 1.24E+02 1.61E+02 12.606 2.281 0.042 Yes

avg 1.94E+02 1.76E+02 2.13E+02 9.567 238.186 0.000 Yes

5th 8.39E+01 3.50E+01 1.00E+02 38.770 inf 0.000 Yes

95th 3.08E+02 2.80E+02 3.36E+02 9.167 112.859 0.000 Yes

Weighted 
Multi-Obj (No-
Policy Variant)

d:4 | up:0 | rf:1 | rpo:2 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

Best for Num 
Sat Refurb and 
Cost/Collectio

n

d:7 | up:0 | rf:1 | rpo:2 | 
P:7 | OUF:2.5e4 | 

Fine:10M | Rebate:250k

Weighted 
Multi-Objective

d:4 | up:0 | rf:1 | rpo:2 | 
P:1 | OUF:5e4 | R:1 | 

Fine:0 | Rebate:0

Weighted 
Multi-Obj (1-

Depot Variant)

d:1 | up:0 | rf:1 | rpo:2 | 
P:1 | OUF:5e4 | R:1 | 

Fine:0 | Rebate:0

Best for Total 
Emissions

d:7 | up:0 | rf:1 | rpo:2 | 
P:1 | OUF:5e4 | R:1 | 

Fine:0 | Rebate:0

Optimal for 
Cost/Refurbish

d:4 | up:1 | rf:1 | rpo:2 | 
P:7 | OUF:2.5e4 | 

Fine:10M | Rebate:250k

Best for Sats 
Refurb (Space)

d:7 | up:2 | rf:1 | rpo:2 | 
P:7 | OUF:2.5e4 | 

Fine:10M | Rebate:250k

0-Warehouse 
Baseline

d:0 | up:0 | rf:0 | rpo:0 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

Best Cost No-
Policy

d:1 | up:0 | rf:1 | rpo:2 | 
P:0 | OUF:0 | Fine:0 | 

Rebate:0

Best for Total 
Cost

d:1 | up:0 | rf:1 | rpo:2 | 
P:1 | OUF:7.5e4 | R:1 | 

Fine:0 | Rebate:0
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4.4.4 Experimental Support for Hypothesis 3

This section examines the extent to which experimental findings from Experiments

3.1, 3.2, and 3.3 substantiate Hypothesis 3, which posits that market-based re-

ward/penalty schemes can establish economically feasible OOS infrastructures that

yield better sustainability metrics than laissez-faire approaches. The evaluation is

structured around four dimensions: the existence of effective policy schemes, their

economic feasibility, their environmental superiority relative to laissez-faire alterna-

tives, and the conditions of their performance.

Existence of Effective Policy Schemes

Experiment 3.1 demonstrated that the parametric reward/penalty framework suc-

cessfully models diverse policy mechanisms with measurably different impacts on

system performance. The down-selection analysis identified 18 policy variants across

eight distinct schemes, each exhibiting characteristic patterns of statistical significance

(based on ANOVA-like variance analysis) for different performance metrics. Policy 1

(OUF with refund conditions) achieved significance for emissions across all cost and

emissions percentiles. Policies 3, 6, and 7 (fine-based mechanisms) showed signifi-

cance at extreme percentiles, indicating their role in managing worst-case compliance

scenarios. Policy 5 (tax-based mechanism) exhibited rebate significance across all

cost percentiles. These varied significance patterns demonstrate that different policy

mechanisms target different aspects of system performance.

Cost-Neutral Pathways to Enhanced Performance

Experimental Support 3.1 provides direct evidence for hypothesis validation through

the $75,000 OUF scheme with refund conditional on satellite collection (Policy 1.2).

This configuration achieved cost-neutrality while delivering meaningful operational

improvements in refurbishment throughput. However, the hypothesis qualification of
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“better sustainability metrics than laissez-faire” requires careful interpretation. Policy

1.2 does not deliver statistically measurable improvements in average emissions com-

pared to the best-performing no-policy configuration given the number of scenarios

tested. The environmental benefits manifest primarily through enhanced refurbish-

ment throughput (29.47% increase over the top no-policy configuration, p = 0.038)

rather than through shifts in average emissions performance tendencies.

Strategic Pairing of Policy with Infrastructure Flexibility

Experimental Support 3.2 reveals that policy-enabled flexible warehouse roll-out al-

lows the framework to reach a target infrastructure size at lower total cost compared

to initializing with equivalent infrastructure at the simulation start. Policy 2.2 (grow-

to-7) achieved 7.5 average warehouses with an average total cost 11.47% higher than

the 0-warehouse baseline, compared to the no-policy configuration that starts with 7

warehouses which is 16.22% more expensive than the 0-warehouse baseline. Similarly,

Policy 3.1 (grow-to-4) created 4 warehouses on average with an average total cost of

5.29% greater than the 0-warehouse baseline, compared to the no-policy configuration

that starts with 4 warehouses with a 7.59% greater average total cost.

However, this cost-efficient incremental deployment approach exhibits losses in

emission reductions and refurbishment capabilities relative to configurations initial-

ized with equivalent infrastructure capacity. For instance, the 4-depot no-policy con-

figuration achieves -10.05% emissions reduction compared to the 0-warehouse base-

line and delivers 198 average refurbishments while the grow-to-4 configuration has a

-6.02% emissions reduction and 120 average refurbishments. To achieve substantial

structural change in environmental metrics, a greater number of warehouses must be

present at the start of the simulation.

This represents a fundamental trade-off: cost-efficient incremental deployment

sacrifices near-term environmental benefits that could be achieved through larger ini-
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tial infrastructure investments. The finding partially contradicts the hypothesis by

demonstrating that not all reward/penalty schemes yield “better sustainability met-

rics” than alternatives. The definition of “better” depends critically on whether one

prioritizes cost efficiency or immediate environmental performance. This framework

provides a testbed to uncover these trade-offs.

Policy-Enabled Initial Infrastructure Investment

Experimental Support 3.3 provides the strongest validation of Hypothesis 3 by demon-

strating how policy can enable larger initial infrastructure investments while main-

taining economic feasibility. The configuration with 4 initial depots and Policy 1

(D:4, CAAS:1, Ref:1, Upg:0, P:1, RPO:2, OUF:5e4) achieves -9.94% average emis-

sions reduction relative to the 0-warehouse baseline [95% CI: [3.06M, 3.21M], %MoE:

2.36], while maintaining +7.80% cost difference [95% CI: [4.78B, 4.93B], %MoE: 1.52]

($350M over 30 years). This configuration outperforms both the 1-depot policy vari-

ant and the 4-depot no-policy variant in sustainability metrics.

The 4-depot policy configuration delivers 262 average total refurbishments com-

pared to 194 for the 4-depot no-policy equivalent, while achieving cost per refurbish-

ment with -95.79% difference compared to the top cost no-policy configuration (versus

-79.45% for the 4-depot no-policy variant). The 7.80% cost difference represents the

necessary budget for subsidies or secondary revenue opportunities to close the busi-

ness case gap for a 4-warehouse servicing infrastructure. The framework identifies

this business case gap, enabling policymakers to design interventions that address the

specific economic barriers to infrastructure development.

The 1-depot variant of this policy (D:1, CAAS:1, Ref:1, Upg:0, P:1, RPO:2,

OUF:5e4) costs about the same as the 0-warehouse baseline while achieving -6.86%

emissions reduction and refurbishing 72 satellites on average. This demonstrates

sustainability improvements can be achieved at cost-neutrality, though the 4-depot
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configuration provides far greater absolute benefits.

Priority Dependence and Stakeholder Alignment

The experimental results demonstrate clear priority dependence in policy perfor-

mance. Cost-neutral schemes align with stakeholders prioritizing minimal economic

disruption and increased servicing throughput. More ambitious schemes align with

stakeholders willing to accept higher costs for enhanced environmental outcomes or

infrastructure development. The down-selection of multiple configurations per policy

(x.1, x.2, x.3) enables systematic exploration of this trade-off space. Configuration

x.1 variants consistently prioritize cost-weighted balance, x.2 variants emphasize en-

vironmental metrics at acceptable cost premiums, and x.3 variants explore specialized

objectives such as increasing refurbishment throughput.

4.4.5 Hypothesis 3 Substantiation

Based on experimental evidence, Hypothesis 3 is validated with important qualifica-

tions:

1. Existence of Effective Policies: The framework successfully models para-

metric reward/penalty schemes with measurably different impacts on infras-

tructure feasibility and sustainability metrics.

2. Economic Feasibility: Cost-neutral policies (Policy 1 with $75k OUF and

refund) achieve near cost-parity with baselines while improving refurbishment

throughput by 29.47%. However, policies that enable substantially better en-

vironmental outcomes require $350M+ subsidies or secondary revenue over 30

years (7.80% cost increase for the 4-depot Policy 1 configuration).

3. Environmental Superiority: Policy schemes demonstrate better sustainabil-

ity metrics than laissez-faire alternatives primarily when coupled with larger
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initial infrastructure investments rather than through cost-neutral incremental

deployment alone. Cost-neutral policies improve refurbishment throughput but

do not provide statistically measurable improvements in average emissions given

the tested scenario count.

4. Priority Dependence: Policy effectiveness varies systematically with infras-

tructure scale and stakeholder priorities.

Addressing Research Question 4: Policy Design Principles

The experimental results provide direct insights for Research Question 4 regarding

optimal combinations and calibrations of policy parameters:

For stakeholders prioritizing minimal cost impact: Policy 1.2 ($75k OUF

with refund upon collection) provides the optimal approach, achieving cost-neutrality

while improving refurbishment throughput by 29.47% (p = 0.038) and decreasing risk

at extreme percentiles.

For stakeholders prioritizing environmental outcomes within moderate

cost constraints: Policy 1 ($50k OUF with refund) applied to 4-depot initial infras-

tructure provides the best balance, achieving -9.94% decrease in average emissions

[95% CI: [3.06M, 3.21M], %MoE: 2.36] at a 7.80% cost increase [95% CI: [4.78B,

4.93B], %MoE: 1.52] ($350M over 30 years). This configuration delivers 262 average

refurbishments with -95.79% cost per refurbishment difference compared to the top

no-policy configuration.

For stakeholders prioritizing infrastructure development: Policies 2.2 and

3.1 enable flexible warehouse roll-out, reaching target warehouse numbers at lower to-

tal cost than initialization with equivalent capacity. Policy 2.2 grows to 7.5 warehouses

at 11.47% cost increase (versus 16.22% for initialized 7-depot no-policy). Policy 3.1

grows to 4 warehouses at 5.29% cost increase (versus 7.59% for initialized 4-depot no-

policy). These policies distribute infrastructure investment across time while building
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operational capacity, though at the expense of near-term environmental benefits.

The experimental results demonstrate that no single policy configuration simul-

taneously optimizes all objectives, but that the parametric framework enables sys-

tematic identification of configurations aligned with specific stakeholder priorities.

This addresses Research Question 4 by showing that high-performing policy design

depends on stakeholder priorities regarding cost-neutrality versus environmental am-

bition, and the framework provides decision-makers with quantified trade-offs to sup-

port policy selection. The Pareto frontier analysis in Experiment 3.3 further illus-

trates these trade-offs, showing the diminishing returns in NOx emission reductions

as more warehouses are added compared to the increase in total costs, with all Pareto-

optimal points featuring flexible satellite upgrades (Rf=1) and no warehouse upgrades

(Upg=0).

4.5 Experimental Support for Overarching Hypothesis

Recall from chapter 2 the overarching observation and the subsequent overarching

research question:

Overarching Observation
The process of motivating and establishing circular space economies in LEO is

a complex system of systems problem that requires analysis from the techni-

cal, financial, and policy perspectives. This thesis aims to provide a systems-

level screening framework that evaluates the interaction between novel OOS

CONOPs, flexible options, and various policy schemes in order to path-find

strategies and infrastructures that could improve the case for OOS in LEO.
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Overarching Research Question
Which flexible option, or set of options, consistently improves the economic

value and environmental impact of LEO-based OOS over a range of potential

policies and future scenarios sampled from multi-domain uncertainty?

Having conducted experiments 1 through 3 and evaluated their degree of support

for their respective hypotheses, we now revisit the Overarching Hypothesis:

Overarching Hypothesis
If a flexibility framework for LEO-based OOS incorporates multiple uncertain

variables, policy impact, novel design concepts like collection hubs, and allows

for multiple combinatorial options, then there will exist an option or set of op-

tions that provides a viable and sustainable private infrastructure for a circular

space economy in LEO.

The experimental results from Hypotheses 1 through 3 provide comprehensive

support for the overarching hypothesis that a flexibility framework incorporating mul-

tiple uncertain variables, policy impact, and combinatorial options can identify viable

pathways toward sustainable infrastructure for circular space economies in LEO. This

support manifests through several findings that challenge prevailing assumptions in

the literature, reveal non-obvious system interactions, and quantify specific techni-

cal and policy mechanisms that enable both economic feasibility and environmental

sustainability. The major findings are presented below, organized by experiment.

4.5.1 Major Findings from Experiment 1

Major Finding 1.1: Earth-Based Refurbishment Dominates Space-Based Servicing

Collection for Earth-based refurbishment paired with in-space ADR vehicle servic-

ing demonstrate greater environmental and operational value than in-space satellite

servicing. Warehouse upgrades enabling in-space satellite servicing show limited sta-
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tistical significance for emissions reduction when other parameters are held constant,

while Earth-return dual-mission operations emerge as the primary emissions reduc-

tion mechanism. This counterintuitive result reflects fundamental economic realities:

declining satellite manufacturing costs combined with declining launch costs make

in-space component replacement economically challenging compared to Earth-based

refurbishment that leverages existing terrestrial infrastructure. The critical enabling

technology is reusable second-stage launch vehicles capable of transporting satellites

to Earth intact, which reduces atmospheric reentry emissions while enabling batch

processing of collected satellites. This finding redirects technology development pri-

orities from complex on-orbit satellite servicing capabilities toward reusable launch

vehicle architectures and orbital warehouses.

Major Finding 1.2: RPO Capability Prioritization Over Satellite Refuelability

Rendezvous and proximity operations (RPO) capability available from mission incep-

tion consistently demonstrates higher value than satellite refuelability across all exper-

iments. This result is surprising given that existing literature and industry attention

emphasizes making satellites serviceable rather than making them RPO-capable for

servicing operations. All top-performing configurations across experiments feature

RPO=2 (immediately available), identifying the capability as a flexibility enabler

that delivers both economic and sustainability benefits. RPO capability improves op-

erational efficiency throughout the CAAS ecosystem by reducing ADR vehicle down-

time, enabling satellites to maneuver to collection locations, facilitating more efficient

warehouse operations, and ultimately improving refurbishment throughput.

Major Finding 1.3: Single Depot Captures Majority of System Benefits

A single orbital warehouse captures much of the operational efficiency and envi-

ronmental benefits of multi-depot architectures while avoiding multiplicative capital
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costs, despite intuition suggesting that distributed infrastructure would be neces-

sary for mega-constellation servicing. The cost-optimal CAAS configuration (D1,

C1, Rf0, Up0, RP2) achieves a modest -6.48% emissions reduction (p < 0.001) and

enables an average of 65 satellite refurbishments over 30 years at cost parity with

the 0-warehouse baseline (+0.76%, p = 0.74 not statistically significant). Scaling to

4 depots improves emissions and refurbishments but increases costs, while 7 depots

cost 16%-36% more than baseline while providing only modest additional emissions

benefits compared to 4 depots. This pattern of diminishing marginal returns estab-

lishes that initial CAAS deployments should prioritize single-depot architectures to

maximize cost-effectiveness, with expansion to multiple depots reserved for scenarios

where substantial government subsidy or secondary revenue streams justify the mul-

tiplicative infrastructure investment. These findings suggest that not all satellites in

a constellation need to be collected for a CAAS infrastructure to be worthwhile.

Major Finding 1.4: Partial Constellation Servicing Provides Measurable Benefits

Servicing a relatively small portion of a mega-constellation’s satellites over the 30-year

analysis period provides statistically significant and measurable operational improve-

ments. The cost-optimal single-depot configuration refurbishes an average of 65 satel-

lites with 95% CI [54, 75] from an 18-plane, 648-satellite constellation while achieving

-6.48% emissions reduction (p < 0.001). This finding is significant because it low-

ers the threshold for viable CAAS business models; comprehensive constellation-wide

servicing is not a prerequisite for demonstrating value. Early-stage systems can target

high-value satellites or technology demonstration opportunities to achieve measurable

returns while building operational experience and validating technical capabilities. As

technologies mature and costs decline, future constellations can be intentionally de-

signed for CAAS compatibility, creating a pathway for incremental adoption rather

than requiring constellation redesign and reconfiguration as a precondition for CAAS
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implementation.

4.5.2 Major Findings from Experiment 2

Major Finding 2.1: Flexible Satellite Serviceability Outperforms Fixed Deployment

Flexible satellite serviceability deployment (Rf=1) consistently outranks both im-

mediate deployment (Rf=2) and never deploying the capability (Rf=0) across 80

uncertainty scenarios, though the absolute cost difference (0.243 percentage points

improvement over inflexible CAAS) is too small to quantify with statistical signifi-

cance given the sample size. Ranking convergence analysis confirms stable second-

place performance for the flexible configuration (D1, C1, Rf1, Up0, RP2) compared

to third-place for the inflexible equivalent (D1, C1, Rf0, Up0, RP2). This finding

demonstrates the value of adaptive deployment strategies that respond to evolving

technology costs and operational experience rather than committing to fixed archi-

tectures at mission inception. This finding, as well as the finding that the CAAS

CONOPs is strengthen by its ADR-deployment capabilities, improved by its use of

reusable second stage vehicles, and threatened by lower failure rates, demonstrates

this framework’s ability to identify top-performing aspects of the CAAS CONOPs,

their relative importance, and their conditions.

4.5.3 Major Findings from Experiment 3

Major Finding 3.1: Cost-Neutral Policies Improve Refurbishment Throughput

The framework identifies specific policy parameter combinations that achieve cost

neutrality over 30-year horizons while significantly improving refurbishment through-

put, though without providing statistically measurable emissions benefits beyond no-

policy CAAS configurations. Policy 1.2 ($75k annual Orbital Use Fee with collection

rebate) achieves cost parity with the 0-warehouse baseline while delivering 29.47%
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increase in satellite refurbishments (p = 0.038, 95% CI: [65, 93], MoE: 16.9%) com-

pared to the top no-policy configuration. However, emissions improvements remain

too small to measure with statistical significance given 80 scenarios (p = 0.56). This

reveals a fundamental bifurcation in policy mechanism design: cost-neutral hybrid

fee-rebate structures enhance refurbishment throughput without shifting central en-

vironmental performance tendencies, while emissions-focused policies require different

architectures involving substantial upfront infrastructure investment or more aggres-

sive enforcement parameters. The existence of cost-neutral pathways demonstrates

that catalyzing sustainable space infrastructure development is possible without im-

posing permanent fiscal burden on government or industry, provided stakeholders

prioritize refurbishment throughput over aggressive emission reduction targets. Pair-

ing policy 1 with a 4-depot initial infrastructure provides the emissions benefits of a

larger CAAS infrastructure while improving throughput and managing costs relative

to a lasseiz-faire 4-depot configuration. Overall, the framework provides a testbed

to help policymakers understand the tradeoffs of varying configurations and policy

parameters.

4.5.4 Minor Supporting Findings

The following findings provide additional context but represent more intuitive results

or validate expected patterns:

• Satellite failure rate assumptions and space-based ADR deployment

appear to influence CAAS competitiveness. While more scenarios are

required for better confidence in the absolute cost differences, the sensitiv-

ity tests suggest that CAAS cost disadvantage increases as the initial failure

rate decreases, indicating that the CAAS value proposition depends fundamen-

tally on failure frequency. Additionally, when ADR vehicles launch exclusively

from Earth rather than deploying from orbital warehouses, the cost difference
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increases relative to baseline, indicating that orbital ADR staging capability

improves cost competitiveness.

• Decreasing ADR Vehicle Cost and Improving Earth-Refurbishment

Streamlining Increase CAAS Competitiveness. The total cost rank order

placed the CAAS configuration above the 0-warehouse baseline in sensitivity

tests that decreased the minimum achievable ADR vehicle cost (via the learning

curve effect) and reduced Earth-refurbishment costs for refuelable and repairable

satellites. This provides guidance for improving ADR vehicle manufacturing

costs and investing in streamlined Earth-refurbishment capabilities for returned

satellites.

• Deterministic cost perturbations produce minimal ranking disrup-

tion. The cost-superior configuration (D1, Rf1, Up0, RP2) maintains stability

across all perturbation tests, with cost differences remaining within a small

percentage of the 0-warehouse baseline.

• Policy-enabled flexible warehouse deployment trades cost efficiency

for near-term environmental impact. Growing to 4 warehouses via Pol-

icy 3.1 costs 5.29% more than baseline versus 7.59% for initializing with 4

warehouses, but achieves -6.02% emissions reduction compared to -8.81% for

initialized configuration and delivers 120 versus 194 average refurbishments.

• Multi-echelon sparing without CAAS provides no value. The best no-

CAAS depot configuration incurs a statistically significant 3.29% cost penalty (p

= 0.025) while achieving limited emissions difference (p = 0.89, not significant),

validating that passive spare depot infrastructure is insufficient compared to the

CAAS concept for the given use case.
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4.5.5 Integration: Addressing the Overarching Research Question

The original problem statement identified the need for systems-level analysis to eval-

uate interactions between novel OOS concepts, flexible options, and policy schemes to

pathfind strategies and infrastructures that could improve the case for OOS in LEO.

The overarching research question asked: Which flexible option, or set of options, con-

sistently improves the economic value and environmental impact of LEO-based OOS

over a range of potential policies and future scenarios sampled from multi-domain

uncertainty?

The experimental evidence provides a definitive answer through systematic iden-

tification of technical configurations, deployment strategies, and policy mechanisms

that enable viable circular space economy pathways. Single-depot CAAS with ac-

tive collection, space-based ADR hosting, flexible satellite serviceability (Rf=1), pre-

initialized RPO capability (RP=2), and Earth-return refurbishment focus consis-

tently emerges as the cost-superior configuration. This architecture achieves -6.48%

emissions reduction (p < 0.001) at cost parity with baseline (+0.76%, p = 0.74 not

significant) while enabling 65 average satellite refurbishments [95% CI: 54-75] over

30 years. Including policy 1.2 ($75k annual Orbital Use Fee with collection rebate)

achieves cost parity with the 0-warehouse baseline while delivering 29.47% increase

in satellite refurbishments.

The framework identifies two distinct policy archetypes aligned with different

stakeholder priorities. Cost-neutral mechanisms ($75k OUF with collection rebate)

improve operational metrics without fiscal burden, achieving 29.47% refurbishment

throughput increase (p = 0.038) while maintaining cost parity. Emissions-focused

mechanisms (Policy 1 + 4-Depot Infrastructure) require $350M business case gap clo-

sure but enable -9.94% emissions reduction and 262 satellite refurbishments through

larger infrastructure initialization. Growth-focused mechanisms reduce the relative

cost burden of initialized large infrastructures from the start, but provide less sus-
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tainability benefits.

The analysis reveals several counterintuitive system interactions that challenge

conventional assumptions. Earth-based refurbishment dominates space-based servic-

ing for both emissions and cost efficiency, while partial constellation collection delivers

measurable sustainability improvements without requiring comprehensive fleet-wide

implementation, offering a first step towards improved circularity for the OneWeb

constellation as-is.

From a methodological perspective, ranking convergence analysis enables confi-

dent technology selection when statistical power limitations prevent significance test-

ing of small absolute differences, providing practical decision-making frameworks for

high-complexity system-of-systems problems where thousands of Monte Carlo sam-

ples may be computationally prohibitive.

4.5.6 Implications for Circular Space Economy Development and Closing Remarks

The experimental results demonstrate that viable pathways to sustainable LEO in-

frastructure exist, but their success depends on precise alignment of technical archi-

tecture, deployment strategy, policy environment, and stakeholder priorities:

• For cost-competitive sustainability improvement with minimal risk:

Deploy single-depot CAAS with flexible satellite serviceability, pre-initialized

RPO, and Earth-return refurbishment focus, potentially augmented with $75k

OUF cost-neutral policy to enhance refurbishment throughput.

• For ambitious environmental outcomes accepting moderate cost in-

creases: Initialize 4-depot infrastructure with $50k OUF policy, recognizing

the $350M business case gap that must be closed through government subsidy

or secondary revenue streams.

• For long-term infrastructure development prioritizing cost efficiency:
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Deploy policy-enabled flexible warehouse growth, accepting reduced near-term

environmental benefits in exchange for time-value-of-money advantages from

delayed capital expenditure.

The framework does not identify a single universally-optimal solution, nor does it

eliminate the fundamental trade-offs between cost, environmental impact, and oper-

ational capability that characterize complex system-of-systems problems. Rather, it

provides the analytical machinery to quantify these trade-offs with statistical rigor,

identify non-obvious mechanisms and dependencies that contradict prevailing liter-

ature assumptions, and map performance across multi-domain uncertainty distribu-

tions that represent plausible futures for space operations.

Two overarching insights emerge that directly address the original problem state-

ment. First, circular space economy infrastructure can achieve cost competitive-

ness with traditional make-use-dispose approaches when properly architected around

Earth-return refurbishment, space-based ADR hosting, and selective flexible deploy-

ment rather than comprehensive in-space servicing capabilities emphasized in existing

literature.

Second, viable pathways exist across the stakeholder priority spectrum from risk-

averse cost-neutral operational enhancement to aggressive emissions reduction, with

the framework providing decision-makers the quantified trade-offs necessary to select

strategies aligned with their specific political, economic, and environmental contexts.

The overarching hypothesis is thereby substantiated: flexibility frameworks in-

corporating combinatorial technical options, multi-domain uncertainty, flexible de-

ployment strategies, and parametric policy mechanisms can identify viable pathways

toward circular space economies. “Viability” manifests not as universal superiority

across all metrics but as context-dependent alignment between stakeholder priorities,

technical configurations, deployment strategies, and policy environments. The exper-

imental evidence demonstrates that the framework successfully performs its intended
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screening function: illuminating the multi-dimensional trade-space where informed

strategic choices can be made, revealing counterintuitive system behaviors that chal-

lenge prevailing assumptions, and quantifying the specific technical capabilities and

policy interventions required to close identified business case gaps.

This systems-level screening capability, validated through three experimental hy-

potheses spanning technical architecture evaluation (Hypothesis 1), flexibility en-

abler/mechanism identification (Hypothesis 2), and policy-flexibility interaction anal-

ysis (Hypothesis 3), confirms that integrated frameworks incorporating the complexity

of LEO-based OOS systems are not merely useful but necessary tools for pathfind-

ing sustainable space operations. The alternative of optimizing individual subsys-

tems or policy mechanisms in isolation fails to capture the critical interactions and

non-obvious dependencies that ultimately determine system-level viability in realistic

operational environments characterized by technological uncertainty, cost dynamics,

and competing stakeholder objectives.
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CHAPTER 5

CONCLUSION

The space industry is consistently at the forefront of technology, inspiring generations

and improving human knowledge. The very industry that puts people on the moon

and gazes into the depths of space could also be the industry that creates the next

circular economy. Such a system would not only reduce pollution, but also expand

our capacity for future space exploration as we improve our resource utilization in

a resource-starved environment. Space debris is a known problem and atmospheric

pollution is a growing problem; improving the case for OOS in LEO could mitigate

both of them. This thesis considers the three-pronged approach for improving OOS

for LEO: better CONOPs, better strategies, and better policies. Underscoring the

value of flexibility, the opportunity in uncertainty, and the complex web of interactions

between systems and decision-makers, this thesis screens options that promote long-

term sustainability of our activities beyond Earth.

The overarching research question driving this work asked: Which flexible option,

or set of options, consistently improves the economic feasibility and environmental im-

pact of LEO-based OOS over a range of potential policies and future scenarios sampled

from multi-domain uncertainty? Through systematic exploration of Collection-as-a-

Service (CAAS) concepts, flexibility mechanisms, and policy interventions using the

Space JAWA framework, this thesis identifies viable pathways toward circular space

economies while acknowledging the inherent trade-offs and context dependencies that

shape infrastructure decisions.

5.1 Major Contributions and Key Findings

This research makes three major contributions:
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First, it provides a comprehensive flexibility framework for LEO-based on-orbit

servicing. This framework captures multiple uncertainty sources, such as launch costs

and satellite manufacturing costs, technology obsolescence, and random failures, using

Monte Carlo analysis across various uncertain scenarios. It models customer demand

for OOS based on the state of uncertainty and interactions between an evolving

satellite constellation and OOS infrastructure, including decision rules for incremental

infrastructure deployment and satellite upgrade decisions. The framework enables

comparison of flexible strategies to identify consistent value drivers across diverse

futures.

Second, it contributes novel OOS elements and concepts of operations specifically

tailored for LEO. This includes collection hubs with upgradable capabilities, coop-

erative maneuvering leveraging J2 perturbations for natural plane drift, temporary

abandonment logistics, and Earth-return using reusable vehicles to eliminate atmo-

spheric emissions. These concepts represent fundamental departures from existing

GEO-focused OOS approaches, recognizing that LEO’s unique characteristics require

purpose-built solutions rather than adaptations of GEO practices.

Third, it provides a policy impact assessment methodology that evaluates market-

based mechanisms, such as fees, subsidies, taxes, revenue-neutral designs, and their

effects on economic viability and environmental performance. Together, these form

a comprehensive framework for screening CONOPs, strategies, and policies that aim

to promote sustainable space infrastructures under deep uncertainty. The framework

explicitly quantifies trade-offs between economic and environmental objectives, iden-

tifies conditions under which different strategies excel, and illuminates policy designs

that overcome market coordination failures.
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5.1.1 Non-Intuitive Findings

Analysis across all experiments revealed several counter-intuitive findings that chal-

lenge prevailing assumptions or positions in space sustainability literature:

Collection for Earth-based refurbishment shows more potential than space-based

refurbishment. This is surprising because much of the literature about creating cir-

cular space economies focuses on in-space manufacturing and servicing rather than

Earth-return and refurbishment. However, declining satellite manufacturing costs

combined with declining launch costs make in-space refurbishment economically chal-

lenging. Earth-based refurbishment leverages the decline in launch costs as well as

existing terrestrial infrastructure. The critical enabler is reusable second-stage vehi-

cles capable of transporting satellites to Earth intact.

RPO capability prioritization emerges as more valuable than satellite refuelabil-

ity. This result is surprising because there is more literature and attention to making

satellites serviceable than making them RPO-capable for the purposes of satellite

servicing and improving circularity. Yet across all experiments and sensitivity anal-

yses, rendezvous and proximity operations capability that is available from the start

consistently showed better value than satellite refuelability. RPO capability improves

operational efficiency throughout the CAAS ecosystem: it reduces ADR vehicle down-

time and facilitates better refurbishment throughput.

Flexible refueling initialization proves more valuable than fixed deployment. While

the cost difference was too small to quantify definitively with the number of Monte

Carlo samples, stable and consistent rank-order analysis shows that flexible refueling

provides a cost benefit over triggering the option from the start. The flexibility to

defer refueling capability until its value justifies investment consistently outperforms

either immediate deployment or never deploying the capability.

Another finding is that warehouse satellite servicing capability is not the dominant

driver for emissions reduction. The experiments revealed that a dominant driver of
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emissions reduction is the Earth-return vehicle technology maturation timeline, not

the ability to refurbish satellites in the warehouses. A basic warehouse aggregating

satellites for batch Earth-return provides nearly the same emissions benefits of a

fully-capable servicing depot. This has important implications: early-stage systems

should focus on satellite collection and ADR vehicle in-space servicing rather than

sophisticated in-space servicing for satellites, which marks a shift from circular space

economy literature that focuses on satellite servicing in space.

A one-warehouse CAAS infrastructure doesn’t come close to collecting all satellites

in a constellation, but even collecting a relatively small portion of a constellation’s

satellites over the analysis period provides measurable emissions reductions and suf-

ficient refurbishments for technology demonstration and maturation. This lowers the

threshold for viable OOS business models, enabling technology demonstrations with

measurable returns. As the technologies become increasingly mature, future constel-

lations could be intentionally designed to be compatible with the CAAS CONOPs.

Despite intuition suggesting distributed infrastructure would be necessary, a single

warehouse captured much of the operational efficiency and environmental benefits

of multi-depot architectures while avoiding multiplicative capital costs. Like a rain

barrel collecting enough water in a rainstorm to water the garden, one warehouse in

a large constellation collects enough satellites to provide sustainability benefits while

moving the needle on space economy circularity.

With the assistance of cost-neutral policy mechanisms, the framework is able to

increase refurbishment throughput and ”catch more rain” without significant financial

strains on either the government or the constellation operator. The analysis identified

specific policy parameter combinations that achieve cost neutrality over the 30-year

horizons while significantly increasing refurbishment throughput. Cost-neutral hy-

brid fee-rebate designs demonstrate that catalyzing sustainable space infrastructure

is possible without imposing permanent fiscal burden on the government or the in-
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dustry.

5.2 Critical Insights for Decision-Makers

This research reveals several critical insights for advancing on-orbit servicing and

circular space economies:

First, policy should be developed in coordination with infrastructure planning.

The framework demonstrates that policy interventions are effective when aligned with

specific CONOPs and strategies. This interdependence suggests that future space

sustainability regulations should emerge through collaborative processes involving

both regulators and infrastructure developers rather than treating policy as CONOPs-

agnostic.

The second critical insight is that reusable second-stage rockets emerge as trans-

formative technology. The dual-mission architecture that leverages these vehicles for

warehouse resupply and satellite return—never sending a rocket home empty-handed,

avoiding ”deadheading”—provides substantial NOx emission reductions while improv-

ing cost efficiency. The pathway to circular space economies need not rely solely on

in-space manufacturing; strategic integration of Earth-to-orbit transportation can ad-

vance sustainability objectives while remaining economically competitive. Support-

ing circular space infrastructures and ADR requires high launch cadence, and with

traditional second stages burning up in atmosphere, this risks contributing more at-

mospheric damage than it saves. Therefore, reusable second-stage vehicles are critical

for environmental goals.

Meeting immediate business needs while considering long-term sustainability is

key to enticing private sector participation. The first step toward circular economies

lies in identifying services that are financially attractive to spacecraft operators in the

near-term that offer dual-use potential for sustainability initiatives. ADR capabili-

ties hosted in space-based infrastructures provide immediate economic value through

303



debris removal services and spare satellite hosting while simultaneously enabling col-

lection operations that are essential for refurbishment. Collection hubs help replenish

satellite constellations with spares and active satellites, reducing the need to launch

new satellites from Earth. Similarly, RPO-capable satellites improve operational flex-

ibility for constellation management by facilitating rendezvous operations required for

servicing. Incremental steps that serve immediate purposes while setting up future

opportunities are essential for economic viability.

Another takeaway is that RPO capability represents an immediate priority. While

significant emphasis has been placed on designing satellites for refueling, this thesis

identifies urgent need for improving LEO mobility through RPO-capable platforms.

Although slower than high-thrust vehicles, electric-propulsion satellites with RPO

provide the foundational capability for collection and aggregation operations essen-

tial to the CAAS concept. If private sector operators remain hesitant, government

customers, such as NASA and the Department of Defense, can catalyze adoption

through contracts prioritizing RPO-capable satellite designs. This represents a low-

barrier form of intervention that government agencies can implement immediately.

Understanding the impact of emissions at scale remains critical. At the scale of

refurbishment encouraged by this framework, making up relatively small constella-

tion portion, the biggest driver of emissions reduction is not reduced deorbits, but

the benefits from reusable vehicles and mission co-opting. For reduced deorbits to

substantially impact atmospheric emissions, servicing infrastructure would need to ex-

tend satellite lifetimes across entire fleets. This underscores another critical insight:

support from Earth remains essential and will continue to be, and these launches carry

steep environmental costs. The framework identifies a pragmatic first step towards a

more self-sustaining space environment rather than claiming immediate independence

from Earth-based logistics.

304



5.3 Actionable Recommendations

5.3.1 For Policy Makers

Near-term recommendations (5-year horizon)

The analysis reveals three distinct policy pathways depending on societal priorities:

For a cost-neutral priority, implementation of orbital use fees with subsidies for

collection, returning subsidy funds to satellite operators over time, provides an ef-

fective mechanism. Policy 1 with moderate orbital use fees provides a cost-neutral

increase in refurbishment throughput because it accounts for the operational mechan-

ics of CAAS concept and incentivizes sustainable operations like increased satellite

collections. Critically, to avoid slowing down industry growth over long timelines,

governments could return subsidies in shorter intervals rather than after the full

analysis period used in these experiments. Returning subsidies in 10-15 year inter-

vals addresses cash flow concerns while still providing the mechanisms to increase

refurbishing throughput.

For a sustainability priority, subsidizing initial infrastructure deployment and im-

plementing cost-neutral orbital use fee structure offers the strongest pathway. Policy

1 variations with initial warehouse subsidies and ongoing fees with rebates for collec-

tion provides the emissions savings of larger infrastructures while the cost-neutral fee

structure incentivizes ongoing throughput. Upfront subsidies overcome coordination

failures that prevent private investment in unproven infrastructure, while ongoing

fee-rebate structure sustains operations without permanent fiscal burden.

For a balanced cost/sustainability priority, subsidizing one initial warehouse plus

additional warehouses over time, contingent on demonstrated performance milestones,

presents the optimal approach. This staged approach deploys initial infrastructure

with subsequent warehouse subsidies triggered when refurbishment throughput, cost

performance, or technology maturation reaches specified thresholds. Growth-focused
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policies with flexible warehouse deployment over time proves more cost-effective than

deploying all warehouses at once. While this does not provide the same immediate

emissions savings as deploying multiple warehouses outright, it leverages the time

value of money to reduce the experienced cost of large-scale infrastructure deployment

while achieving meaningful sustainability gains.

All pathways should be paired with immediate satellite RPO capability and flex-

ible satellite serviceability while the focus should prioritize standardized docking

plates, autonomous navigation capabilities, and Earth-based refurbishment.

Long-term recommendations (10+ year horizon)

While not included within the scope of this thesis, policy makers could adopt adap-

tive policy frameworks that can pivot based on observed outcomes. A dynamic policy

approach might start with a growth-focused plan emphasizing infrastructure deploy-

ment subsidies and minimal fees before transitioning to a cost-neutral policy after

servicing infrastructure grows to a sufficient scale. The transition could be triggered

by objective metrics like aggregate refurbishment throughput thresholds or the size

of the subsidy fund.

Implementation considerations by jurisdiction

Direct implementation of orbital use fees in the United States faces political chal-

lenges, since the current climate emphasizes deregulation and commercial space com-

petitiveness. However, opportunities exist for indirect pathways. The U.S. Space

Force values dynamic responsiveness and maneuverability without regret, which are

characteristics that are aligned with RPO-capable satellite architectures. Federal

procurement contracts requiring RPO capability for defense satellites could mature

the technology, creating spillover benefits for commercial applications. Additionally,

orbital carriers being developed by companies like Gravitics for defense applications
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share architectural similarities with the collection warehouses proposed in this thesis.

While primarily intended to house defense assets, these platforms could be adapted

with exterior docking plates to demonstrate collection capabilities in LEO, effectively

piloting the CAAS concept under defense auspices before commercial scaling.

The U.S. could also leverage existing regulatory frameworks. The FCC’s licensing

authority over commercial satellites provides a mechanism for RPO capability re-

quirements without new legislation. License conditions could mandate standardized

docking interfaces and autonomous navigation capabilities as prerequisite for spec-

trum access, creating policy pressure through regulatory rather than fiscal means.

Proceeds from FCC fines could help subsidize the relevant R&D initiatives.

The United Kingdom and European Space Agency are more likely than the U.S.

to implement orbital use fees and establish the prescribed public-private partner-

ships. European precedent for environmental regulation, such as carbon pricing,

Extended Producer Responsibility schemes, and Pigouvian taxation, provides the

political and institutional foundation for similar space policies. Existing collabora-

tion between Astroscale, OneWeb, and UK government to remove a failed OneWeb

satellite demonstrates both technical capability and political willingness for public-

private partnerships related to space sustainability. European implementation should

emphasize cost-neutral designs to minimize competitiveness concerns.

Japan presents a favorable jurisdiction for comprehensive CAAS policy imple-

mentation. The Japanese space industry has demonstrated not only manufacturing

capability in space sustainability technologies, but sustained governmental interest

and financial commitment. Japan’s coordinated industrial policy model, where gov-

ernment works closely with industry to develop strategic sectors, aligns naturally with

the hybrid fee-rebate structures identified as most effective. Cultural and political

emphasis on long-term planning and environmental stewardship, combined with tech-

nical leadership in robotics and precision manufacturing applicable to OOS systems,
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positions Japan as a potential early leader in CAAS deployment.

Challenges of policy implementation

Several cross-cutting implementation challenges require attention regardless of ju-

risdiction. First, while cost-neutral policies achieve revenue neutrality over 30 year

horizons, interim periods may see cash flow constraints for operators, particularly

early entrants that bear fees before substantial subsidies become available. This cash

flow mismatch could slow constellation deployment or deter new entrants. Incremen-

tal payouts from subsidy funds or exemptions for early entrants could mitigate this

concern while maintaining long-term revenue-neutral structure.

Second, designing policy in coordination with technology and CONOPS devel-

opment risks the appearance of ”choosing winners” by favoring specific companies

or technologies. Governments must maintain technology and vendor agnosticism to

preserve competitive markets. However, the proposed policy approach is relatively

agnostic regarding specific manufacturers: orbital use fees with rebates for any satel-

lite collected to any certified facility, regardless of who operates the facility or builds

the satellites. This opens the field for any entity to develop RPO-capable satellites

or warehouse technology while providing a clear demand signal for making such in-

vestments.

5.3.2 For Satellite Constellation Operators

Near-term recommendations (5-year horizon)

Constellation operators should prioritize the development of electric propulsion satel-

lites with RPO capability. This involves designing satellites with standardized docking

plates, autonomous navigation sensors, and sufficient propellant reserves for termi-

nal approach maneuvers. RPO-capable architectures could provide operational value

beyond the applications considered in this thesis, such as improved collision avoid-
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ance and the potential for satellite repositioning to optimize coverage during demand

fluctuations.

Additionally, operators should begin demonstrating routine docking operations

through low-risk pathways. Initial demonstrations could use the International Space

Station or other emerging commercial space stations as docking targets and test

hardware and software systems before deploying dedicated CAAS infrastructure.

Rideshare missions could carry dedicated docking demonstration payloads, such as

small experimental spacecraft that practice approach and berthing maneuvers with

host vehicles or deployed docking targets.

Operators should also consider secondary revenue sources for collection capabili-

ties beyond primary refurbishment mission. Collection hubs in valuable orbits could

serve as temporary housing for defense or scientific payloads that require flexible

deployment, effectively functioning as orbital ”coworking” spaces. They could pro-

vide propellant resupply for deep-space mission vehicles using LEO as staging point,

or serve as data relay nodes. These auxiliary services could improve the business

case for deploying initial warehouse infrastructure before refurbishment demand fully

materializes.

Finally, operators should deploy spare warehouses with the capability to dock

with and refuel Active Debris Removal vehicles. This creates a symbiotic relationship:

ADR vehicles gain operational flexibility from orbital refueling, reducing mission costs

while warehouses gain immediate utility by serving ADR operations while collection

infrastructure matures. This thesis finds that on-orbit refueling is more valuable for

ADR vehicles than it is for collected satellites. This bootstrapping strategy provides

near-term revenue while building toward longer-term refurbishment operations.
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Long-term recommendations (10+ year horizon)

Operators should continuously evaluate environmental and industry conditions to de-

termine the optimal mix of space-based versus Earth-based refurbishment. If Earth-

return vehicle technology matures rapidly and costs decline as projected, Earth-based

refurbishment becomes the strongly preferred pathway. In this case, operators should

focus satellite design on ease of Earth-return and refurbishment, focusing on modular

construction, accessible component bays, non-destructive disassembly features. En-

vironmental testing should include return loads to ensure components survive round-

trip transport.

Conversely, if Earth-return technology development encounters delays or cost

floors prevent economic viability, space-based refurbishment may become relatively

more attractive. In this case, operators should pivot toward making satellites fully

serviceable in orbit by considering swappable components, robotic manipulation ac-

cess, and diagnostic interfaces. The CAAS concept’s value lies precisely in maintain-

ing multiple options rather than over-committing to one refurbishment pathway too

early.

5.3.3 For Satellite Manufacturers

Near-term recommendations (5-year horizon)

Manufacturers should explore incentive structures for the return of their own satel-

lites. Companies could offer rebates or trade-in credits for constellation operators

returning satellites at end-of-life. This could provide several benefits, such as (1) the

opportunity to study long-term space environment effects on materials and compo-

nents, (2) recovery of valuable materials, particularly rare earth elements in solar cells

and electronics, (3) potential component reuse after testing and refurbishment, and

(4) public relations value in demonstrating environmental stewardship. There are
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terrestrial precedents for manufacturer take-back programs, such as automotive man-

ufacturers offering trade-in values for end-of-life vehicles, Apple’s recycling programs

for iPhones with credit toward new devices, and industrial equipment manufacturers

refurbishing and reselling used machinery.

Long-term recommendations (10+ year horizon)

Over the long term, manufacturers should develop modular satellite architectures

that are optimized for whichever refurbishment pathway emerges as dominant. If

Earth-return proves viable, they should design for terrestrial disassembly, testing, and

recertification. If space-based refurbishment prevails, they should design for robotic

manipulation and component replacement in microgravity.

Manufacturers should also investigate strategic positioning in the OOS value chain.

Vertically integrated manufacturers could leverage in-house refurbishment capabili-

ties, capturing value from both initial production and subsequent lifecycle services.

Alternatively, manufacturers might partner with specialized OOS providers, focus-

ing on new production while licensees handle refurbishment. The optimal strategy

depends on core competencies, capital availability, and the evolution of the market

structure.

5.3.4 For On-Orbit Servicing Providers

Near-term recommendations (5-year horizon)

New entrants or pivoting companies should focus initial deployments on collection and

aggregation capabilities and ADR vehicle refueling rather than sophisticated satellite

servicing. Results from this thesis indicates that warehouses that provide berthing

and temporary storage for satellites while providing dock and refueling services for

ADR vehicles capture most of the environmental and economic value of full-service

facilities. This suggests staged market entry is the best approach: deploy collection
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capability first and validate operations and demand before adding satellite servicing

capabilities.

Additionally, service providers should prioritize partnerships with reusable launch

vehicle developers. The symbiotic relationship between launch vehicle operators get-

ting secondary down-mass revenue for their fully reusable launch vehicles and OOS

providers needing transport for collected satellites creates the potential for mutually

beneficial partnerships. Joint ventures, long-term contracts, or vertical integration

between launch and servicing could improve the economics for both parties.

Providers should also develop diverse revenue models. Pure refurbishment ser-

vices may prove insufficient for financial viability, particularly during the early years.

Auxiliary services, such as orbital storage for government or commercial payloads,

data relay services, or hosting scientific payloads could provide a base revenue as the

collection infrastructure scales up.

Long-term recommendations (10+ year horizon)

As the industry matures, service providers should develop sophisticated pricing strate-

gies that capture the full value of the services provided. Initially, pricing may need

to be penetration-level to attract early customers and prove concepts. However, as

servicing becomes established and potentially required by regulation, providers can

implement value-based pricing that reflects the full economic and regulatory value of

debris removal, emissions reduction, and satellite life extension.

Service providers should also participate actively in standards development for

OOS interfaces, protocols, and practices. First movers that establish de facto stan-

dards gain a lasting competitive advantage as satellite operators invest in compat-

ibility with deployed infrastructure. However, overly proprietary approaches risk

fragmentation and inefficiency. A balanced strategy of open standards for core in-

terfaces with proprietary innovations in service delivery may optimize both adoption
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and competitive positioning.

5.4 Lessons Learned and Recommendations for Future Researchers

Several methodological lessons emerged that will inform future work in this domain:

The use of high-performance computing clusters for large parametric studies is

essential for recommended future work. This thesis evaluated dozens of distinct con-

figurations across 80 Monte Carlo samples per test. More comprehensive parametric

studies, particularly sensitivity analyses that systematically vary all input parameters

across wider ranges, would provide a better idea of how assumed values and sources

of uncertainty impact viability but would require significantly more runs. Future re-

search should plan for cluster computing from the outset, designing simulation code

for efficient parallelization and result aggregation.

Another lesson is that the numerical results of this thesis are use-case-specific

while sensitivities and trends provide lasting insights. The specific numerical findings

apply to the constellation parameters used in this analysis. Future researchers should

emphasize identifying structural insights, threshold effects, and consistent orderings

across scenarios rather than focusing on point estimates from particular parameter

sets.

Overall, multi-domain uncertainty integration is essential but proved to be chal-

lenging. This framework integrated technological uncertainty (like Earth-return ve-

hicle maturation), economic uncertainty (like launch costs, satellite manufacturing

costs, and infrastructure costs), and operational uncertainty (like failure rates and

technology obsolescence). Capturing all simultaneously stressed both modeling and

computational resources, but was essential for meaningful conclusions. Isolating un-

certainties would produce misleading results because interactions between configura-

tion variables and sources of uncertainty were prominent.

Lastly, decision rule specification matters enormously. This thesis uses conditional-
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go rule types with three-level decision hierarchy: individual satellite, satellite constel-

lation fleet-level, and servicing infrastructure-level. The framework makes decisions

at particular instances by considering the net present value of satellites, the state

of uncertainty, and the current available options. These decision rules provide intu-

itive, straightforward logic modeling realistic human decision-making, though in some

cases, decision multipliers were implemented and tuned through trial-and-error to per-

fect outcomes. While backward induction for real options analysis and multi-stage

stochastic programming are powerful approaches, they’re computationally intractable

for this problem’s complexity. Future work could explore more sophisticated optimiza-

tion of these decision triggers and potentially consider validation against empirical

data from analogous industries.

5.5 Future Work

This thesis establishes a foundation for analyzing CAAS and on-orbit servicing eco-

nomics, yet several promising research directions could extend and refine this frame-

work. These opportunities span technical modeling improvements, design considera-

tions, market expansion, policy evolution, and operational architecture enhancements.

The first priority, which would not require major changes to the framework, should

be to expand the computational budget using a cluster and run thousands rather than

tens of scenarios. This would support development of accurate surrogate models and

provide denser sampling of the design space, potentially revealing nonlinear interac-

tions and edge cases not apparent in the current analysis. More data points could

enable machine learning for decision rules, which could uncover non-intuitive decisions

outperforming the human-tuned heuristics used in this thesis.

Incorporating optimization algorithms into the framework would improve both

refurbishment throughput and operational efficiency. The current approach explores

predefined configurations and policies while embedding optimization routines could
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identify non-intuitive superior architectures emerging from the intersection of multiple

decision variables. Similarly, optimizing decision rules for when to deploy flexible

options, rather than using intuitive and manually-tuned decision triggers, could reveal

more sophisticated deployment strategies that respond dynamically to system state

and uncertainty realizations.

Another region for future work is improving cost modeling fidelity, which would

strengthen confidence in the economic conclusions. While the cost models in this the-

sis capture major drivers including launch, manufacturing, and operations, higher-

resolution modeling of refurbishment processes, logistics, and failure modes would

enable more precise trade-space characterization. Collaboration with subject matter

experts could refine these estimates beyond first-order approximations. Additionally,

component-level failure modeling that differentiates between types of failures and re-

quirements for servicing, rather than the simplified approach used here, would provide

a more nuanced understanding of when different servicing capabilities provide value.

This would inform capability prioritization decisions.

From a technical modeling perspective, refining the low-thrust trajectory model

would better capture the benefits of collaborative maneuvering. The current imple-

mentation, which defaults to drift rate calculations for orbital transfers, likely un-

derestimates efficiency gains achievable through coordinated low-thrust rendezvous

operations. A higher-fidelity propagator that explicitly models thrust arcs, orbital

mechanics, and propellant consumption would provide a more accurate assessment of

collection and aggregation timelines, ultimately affecting both cost and throughput

projections. Complementing these trajectory improvements, expanding environmen-

tal analysis beyond NOx emissions would provide a more comprehensive sustainability

assessment. Full lifecycle analysis incorporating satellite manufacturing, launch vehi-

cle production, ground operations, and end-of-life disposal would contextualize rela-

tive environmental benefits of refurbishment versus new satellite deployment. Under-
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standing how returning satellites to Earth for refurbishment, rather than deorbiting

them, affects total environmental footprint requires detailed lifecycle modeling that

accounts for manufacturing energy, material extraction, and reprocessing capabilities.

Shifting focus to design considerations, longer operational lifespans deserve at-

tention. Previous on-orbit servicing frameworks have examined this, but this thesis

focused on servicing present-day LEO satellite designs. Understanding how constella-

tion design might evolve if satellites are intentionally built for extended lifespans with

servicing availability could unlock significant additional value. Building on this design

perspective, the framework could guide constellation design for serviceability more di-

rectly. New entrants could distinguish themselves from existing mega-constellations

by intentionally designing constellations with fewer, longer-lived, higher-value satel-

lites positioned strategically to leverage CAAS from the start. Researchers could

leverage this framework to inform these strategic design decisions.

Regarding market expansion, opening the framework to multi-constellation ser-

vicing with different satellite sizes and types could dramatically expand the business

case, despite coordination challenges involved. This thesis focused on a single owner-

operator constellation, but realistic OOS infrastructures would likely serve multiple

customers. The economic benefits of shared infrastructure across multiple operators

could fundamentally alter the value proposition.

Policy considerations present particularly rich opportunities for future investiga-

tion, approached from two complementary perspectives. From the policymaker per-

spective, exploring time-varying policy implementation merits investigation. While

this thesis evaluated static policy schemes, future work could examine deliberate pol-

icy transitions over mission timelines. Some policies excel at enabling infrastructure

growth while others optimize cost-neutral throughput once infrastructure exists. For

instance, starting with growth-focused subsidies before transitioning to cost-neutral

fee-rebate structures after certain infrastructure milestones could unlock significant
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additional value while managing fiscal burden over time. From the operator perspec-

tive, treating policy as time-varying uncertainty presents a complementary research

direction. This would examine how constellation operators should account for pol-

icy uncertainty when they don’t control what policies get implemented or when they

change. If policy represents exogenous uncertainty rather than known regulation,

how should operators design flexible business strategies and infrastructure invest-

ments that remain viable across different policy scenarios? This would inform resilient

constellation design and operational strategies.

The bidirectional relationship between CAAS and reusable second stages warrants

deeper study. CAAS relies on returning satellites to Earth, but simultaneously creates

a business case for reusable vehicles by making return trips valuable. Understanding

this mutually reinforcing dynamic deserves dedicated investigation, particularly as

launch vehicle reusability continues maturing.

Finally, extending the CAAS concept of operations could unlock operational ef-

ficiencies not explored in the current framework. Two promising directions merit

investigation. First, ADR vehicles employing electric propulsion rather than chem-

ical propulsion deserve consideration. Because the warehouse/CAAS system inher-

ently operates on slower timescales by using J2 drift for orbital plane changes rather

than impulsive maneuvers, there is less premium on rapid orbital transfers. Electric

propulsion systems, while slower, offer substantially higher specific impulse and lower

propellant mass requirements. ADR vehicles could spiral between collection targets

rather than executing fast Hohmann transfers, potentially reducing operational costs

and extending vehicle operational lifetimes. The trade between transfer time and

propellant efficiency becomes more favorable when collection operations already ac-

commodate drift-based timescales spanning weeks to months.

Second, reusable second stages serving dual roles as orbital transfer vehicles or

mobile servicers could fundamentally alter the operational architecture. Rather than

317



viewing reusable stages solely as Earth-return transportation, they could function

as agile orbital assets capable of traveling through LEO independently. This would

enable faster satellite collection, distributed warehouse locations, or even servicing

capabilities without requiring separate ADR vehicle fleets. The bidirectional nature

of reusable stages makes them natural candidates for orbital maneuvering roles that

capitalize on their propulsion systems during the on-orbit portion of missions. Un-

derstanding how to optimize this dual-use capability could reveal synergies between

launch vehicle reusability and on-orbit servicing infrastructure that strengthen the

business case for both.

5.6 Closing Perspective

This thesis demonstrates that the pathway to circular space economies emerges not

from technological breakthroughs alone, but from systematic understanding of how

technical architectures, flexible deployment strategies, and policy mechanisms in-

teract across uncertain futures. Circular space economies emerge from systematic

understanding of not just technology, but interactions between engineering, business

strategy, and policy—designing for one in a vacuum won’t achieve circularity.

The framework reveals consistent patterns indicating viable pathways exist de-

pending on priorities. RPO capability, reusable launch vehicles, warehouse-deployed

ADR, and strategic policy-flexibility pairing consistently improve outcomes relative

to baseline approaches. There are trade-offs, but the framework provides decision-

makers with a screening tool to identify strategies balancing economic viability with

sustainability objectives.

The key insight is that viability comes through deliberate infrastructure develop-

ment that responds to immediate needs while providing opportunities for sustainable

operations in the future. For private sector appeal, de-risking these steps as much

as possible is critical. This thesis provides pragmatic vision that shows achievable
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first steps. The transition to sustainable space operations need not follow an all-

or-nothing approach; starting with just the portion of the constellation that reaches

the breakeven point offers a pragmatic pathway for encouraging private companies

to adapt larger operations. If 30-year deployment results in 4-7 operational ware-

houses, subsequent decades will benefit from established infrastructure capable of

higher refurbishment rates.

As humanity’s presence in LEO intensifies with projections of tens of thousands of

satellites in coming decades, the need for a circular space economy becomes increas-

ingly urgent. This research demonstrates technical pathways, strategic approaches,

and policy frameworks that aim to make sustainable LEO operations achievable. The

question is no longer whether circular space economies are possible, but whether stake-

holders possess the collective will to implement them before unsustainable practices

become entrenched and environmental challenges blossom.

The next generation of space operations becomes achievable when we align tech-

nical capabilities, business strategy, and policy perspectives. These findings suggest

that viable circular space economies in LEO are achievable through deliberate, in-

cremental infrastructure development supported by aligned policy interventions - a

more pragmatic vision than revolutionary transformation, but one grounded in the

economic and technical realities that will shape the next generation of space opera-

tions.
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APPENDIX A

ASSUMPTIONS, EQUATIONS, AND MODELS

Table A.1: Use Case Simulation Parameters

Variable Name Range
number of planes 18
satellites per plane 36
customer altitude 1200km
parking orbit altitude 796km
inclination 86.4 degrees
number of in-plane spares 2 satellites
satellite dry mass 150 kg[192]
satellite fuel mass 12 kg
dry mass ADR 150 kg [80]
fuel mass ADR 150 kg
ISP ADR 230 s
warehouse max capacity 35 satellites
warehouse initial capacity 5 spare satellites
warehouse electric fuel mass 500 kg
warehouse chemical fuel mass 1000 kg
warehouse dry mass 1000 kg
Xenon cost $5000/kg [193]
Green monopropellant cost $100/kg [194] [195]
discount rate 0.03
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Table A.2: Rocket Performance Parameters

Parameter Falcon 9 Starship Electron Neutron Stoke Nova Terran R New Glenn

ISP 1 311[227] 330 311[228] 330 345[229] 330 340
mass stage full [kg] 549 054 5 000 000 13 000 480 000 100 000 1 500 000 1 600 000
ISP 2 348[227] 380 343[228] 360 425[229] 375 445
payload max capacity [kg] 22 800 100 000 300 13 000 3000[229] 23 500 45 000
V stage sep [m/s] 3410[230] 2300 2333[231] 2500 2500 2500 8000
second stage mass [kg] Equation 3.34 180 000 2 460 000 6050 222 000 47 800 693 000 226 796
V final [m/s] 7800 7800 7800 7800 7800 7800 7800
Mdry2 [kg] Equation 3.35 26 800 460 000 890 36 400 10 400 140 500 27 215.5
initial launch cost ($/kg) 3986[200] 100 23 437.5[236] 3846[237] 250 2340.4[238] 1511 [200]
estimated years until mature 0 5 0 4 5 5 3

Table A.3: Sources of Uncertainty and Modeling Parameters

Uncertain Quantity Model/Method Initial Value(s) Uncertainty Parame-

ters

Eq.

Constellation Revenue Geometric Random Walk

/ Log-normal PDF

$1.4B/year [196] α = 0.059 [197], σ = 0.15 Equation A.1

Launch Cost Log-normal PDF with

volatility cone

αm based off present launch

cost per kg and Citi Bear

Case [198]

σ = 0.1 before 2040, σ =

0.35 and αm = 0 after

2040

Equation A.1

Continued on next page
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Table A.3 – continued from previous page

Uncertain Quantity Model/Method Initial Value(s) Uncertainty Parame-

ters

Eq.

Launch Delay Processing + Exponential Tprocessing = 3 months,

µlaunch = 2 months

Exponential with µlaunch Equation A.2

ADR Launch Delay Learning Curve + Expo-

nential

mintime = 0.5 years,

initialextraTime = 1.5 years,

λ = 0.2303

Exponential with µlaunch Equation A.3

Satellite Manufacturing

Cost

Log-normal PDF $900,000 [191] αm = −0.075 [199], σm =

0.1

Equation A.1

ADR Vehicle Cost Learning Curve + Time-

based decay

$48M (initial) [101] λ ∼ U(0.1, 0.5), Pmin ∼

U(0.5, 0.8) × costi, r =

0.03

Equation A.4

ADR Collection Success Learning Curve (Power

Law)

S0 ∼ U(0.7, 0.99) λ ∼ U(0.05, 0.25) Equation A.6

Space-Based Services

(ADR Operation, Refuel,

Repair, Obsolete Repair)

Log-normal PDF $250k / $250k / $562.5k /

$687.5k

α = −0.0375, σ = 0.1 Equation A.1

Continued on next page
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Table A.3 – continued from previous page

Uncertain Quantity Model/Method Initial Value(s) Uncertainty Parame-

ters

Eq.

Warehouse Cost Learning Curve $100M (initial) λ ∼ U(0.1, 0.5), Pmin ∼

U(0.5, 0.8)×costi, Nmax =

54

Equation A.7

Warehouse Maintenance

Cost

Lognormal PDF (cost) Every 15 years: $5M median

repair cost

Cost: µ = ln(5 ×106), σ =

1.0

Equation A.8

Earth-Based Services (Re-

pair, Refurbish, Ob- solete

Repair

Log-normal PDF $450k / $200k / $550k

(repairable); $855k (non-

repairable)

α = −0.075 , σ = 0.1 Equation A.1

Warehouse Upgrades Log-normal PDF $8M / $15M α = −0.0375, σ = 0.1 Equation A.1

Satellite Upgrade R&D Log-normal PDF $5M / $9M R&D + 6% / 10%

cost increase

α = −0.0375, σ = 0.1 on

R&D

Equation A.1

Technology Obsolescence Weibull Utility Function N/A k = 2, λ = 1, β = 2 Equation A.9

Failure Time Exponential (from

MTBF) and Failure

Change Rate, Uniform

MTBF starting with 1 fail-

ure/year, includes exponen-

tial change rate with random

parameter from uniform dis-

tribution

MTBF Derived from fleet

size, exponential failure

change rate varies uni-

formly between 0.005 and

0.08

Equation A.10,

Equation A.11, and

Equation A.12

Continued on next page
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Table A.3 – continued from previous page

Uncertain Quantity Model/Method Initial Value(s) Uncertainty Parame-

ters

Eq.

Failure Type Bernoulli Trial 50% inoperable None (uniform draw) —

Collision Event Cost Exponential + Uniform +

Cascade Probability

$10k base β = 0.01, Pcascade =

min(0.02T, 0.5)

Equation A.13

Table A.4: Initial Cost Assumptions (Year: 2025)

Variable Name Value Justification

Satellite Unit Cost $900,000 Based on estimated OneWeb satellite cost [191]

Earth Refurbishment (General) $200,000 Includes labor, testing, parts and upgrades, and facilities. It’s

assumed that refurbishing is roughly 20-40% of manufacturing

a new satellite, based on the economics of refurbishing reusable

rockets, which is 65% cheaper than launching new [221]

In-space/Earth Repair (Repairable Satellite

Failure)

$450,000 More effort than refurbishment, roughly half the cost of a new

satellite

In-space/Earth Repair (Obsolescence, Re-

pairable)

$550,000 More expensive than repair due to payload upgrade and related

testing

Continued on next page
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Table A.4 – continued from previous page

Variable Name Value Justification

Earth Repair (Obsolescence, Non-repairable) $855,000 Requires more extensive labor to swap a payload in a satellite

not meant to be repaired, roughly the same cost as a new

satellite

Satellite Refuel Upgrade, R&D $5,000,000 Redesign for mechanical and fluid interface, propulsion system

adjustments, electrical & software integration, testing and cer-

tification

Satellite Repair Upgrade, R&D $9,000,000 Design modularization, standardized interfaces, on-board fail-

ure monitoring, testing, qualification

Warehouse Refuel Upgrade $8,000,000 Xenon storage and pressure management, refueling system

with specialized docking, precision control systems, diagnostic

monitoring, coordination between depot and satellite, training,

certification, and testing

Warehouse Repair Upgrade $15,000,000 Diagnostic systems and related sensors, robotic capability and

tooling, spare parts, power systems for satellite battery test &

recharge, specialized software, training, and testing

ADR Vehicle Cost $48,000,000 Based on $16 million (USD) Astroscale contract that covers

about 1/3 of vehicle cost [101]

Continued on next page
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Table A.4 – continued from previous page

Variable Name Value Justification

ADR Operation $250,000 Includes the cost for ground support, GNC, RPOD, system

checks, mission operations

ADR Operation for RPO satellite $83,250 Includes the cost for ground support, GNC, RPOD, system

checks, mission operations. Less than classic ADR oeprations

because RPO satellites are upgraded to be cooperative and

maneuver duration is shorter

In-Space Refueling Operation $250,000 Includes the cost for ground support, controls, robotic opera-

tion, system checks, depreciation of hardware, labor, mission

operations

Warehouse Cost $100,000,000 Based on analogous servicing spacecraft budgets, such as

DARPA RSGS [222] and MEV-2 [223], which have more capa-

bility than initial spare warehouse configuration. Can also be

compared to the scale of large GEO satellites, such as Intelsat

10-02 [223], factoring out launch cost to GEO

Deorbit Cost (From constellation altitude) initially $100,000;

set to 1/9 of space-

craft cost and varies

proportionally

Based on NASA estimate of additional cost for medium satel-

lite’s extra propellant to immediately deorbit from 800 km

ranges (between $85,000 and $425,000 [224])

Continued on next page
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Table A.4 – continued from previous page

Variable Name Value Justification

Satellite to Warehouse RPO Cost 1/2 of present deor-

bit cost

conservative estimate based on estimated deorbit cost [224])

Deorbit Cost (From parking orbit altitude) 1/2 of present deor-

bit cost

conservative estimate based on estimated deorbit cost [224])
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Table A.5: Latin Hypercube DOE Parameters for Uncertain Variables

Parameter Min Max

Earth-based repair operation cost streamlining cost multiplier 0.5 1

Earth-based refuel operation streamlining cost multiplier 0.5 1

Technology obsolescence intensity parameter 1 5

Time to technology obsolescence onset (years) 5 15

Active Debris Removal (ADR) initial success rate 0.7 0.99

ADR success rate learning curve exponent 0.05 0.25

Warehouse cost learning curve exponent 0.1 0.5

Warehouse cost minimum cost fraction 0.5 0.8

ADR cost learning curve exponent 0.1 0.5

ADR minimum cost fraction 0.5 0.8

Satellite cost multiplier for RPO-capability upgrade 1 1.5

Satellite cost multiplier for repair upgrade 1 1.3

Satellite cost multiplier for refuel upgrade 1 1.2

Satellite return to Earth cost (multiplier of present launch cost) 0.2 0.99

Simulation year that returning satellites to Earth becomes possible 7 15

Satellite failure rate change rate (per year) 0.005 0.079

Percentage of launch vehicles with reusable 2nd stages 20% 70%

Reusable 2nd stage fleet percent multiplier if Earth-return available 1× 1.25×

A.0.1 Uncertainty Equations

Log-normal probability density function for the geometric random walk method

The geometric random walk method is commonly used to model revenue and was

used in previous OOS flexibility frameworks [10, 141, 142].
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p(m)
τ (x) = 1√

2π

1
σm

√
τ

1
x

exp
{

−(ln(x) − (αm − σ2
m/2) τ)2

2σ2
mτ

}
(A.1)

In the equation above, αm is drift, ωm is volatility, and τ is time.

Launch Cost, Delay, and Payload

Launch cost scenarios use log-normal models with volatility cones based on Citi Re-

search projections [198] with a sigma m approximated at 0.1. After year 2040, sigma

m increases to 0.35 since this goes beyond the range of the citi research projections.

Uncertainty is also applied to launch time, with Tprocessing = 3 months and

mu launch = 2 months such that

Tlaunch = Tprocessing + Xlaunch, Xlaunch ∼ Exponential(µlaunch) (A.2)

For ADR mission launched directly from Earth, Tprocessing follows a learning

curve as more ADR vehicles are manufactured and launched.

adrTprocessing = min
time

+(initialextraTime × e−λt) (A.3)

where mintime = 0.5 years, initialextraTime = 1.5 years, and λ = 0.2303.

This framework assumes that downmass payload capacity on reusable second

stages is 1/3 of its launch payload capacity.

ADR Vehicle Cost

ADR vehicle costs are modeled using a time-based exponential decay starting from an

initial cost of $48,000,000 [101]. The cost incorporates a learning curve effect based

on the number of vehicles manufactured:

n = {1, 2, . . . , Nmax}; value(n) = Pmin + (1 − Pmin) · e−λn (A.4)
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where n represents the number of ADR vehicles added (starting from 1), Nmax is

the maximum number of ADR vehicles considered (assumed to be equal to the number

of planes, 18), Pmin is the minimum ADR cost fraction (asymptotic limit), which is

randomly sampled between 0.5 and 0.8, and λ is the learning exponent controlling

the rate of decay, which is randomly sampled between 0.1 and 0.5.

Additionally, a time-based cost reduction applies with annual reduction rate r =

0.03 and time t in years:

cost reduction = (1 − r)t (A.5)

Space-Based Operations and Costs

ADR vehicles are given a chance of successfully collecting a satellite based on a

learning curve trend which is given as follows:

n = {1, 2, . . . , Nmax}; value(n) = 1 − (1 − S0) · n−λ (A.6)

In this equation, n is the number of satellites collected (starting from 1), Nmax

is the maximum number of collected satellites considered (assumed to be 50), after

which point the collection probability remains the same, S0 is the starting point

(initial value at n = 1), which is a random value that ranges between 0.7 and 0.99,

and λ is the learning exponent (controls the rate of improvement), which is a random

value that ranges between 0.05 and 0.25

The cost of each ADR operation is assumed to start at $250,000 and this value

changes over time following the same geometric random path as the other space-

based operations. These space-based services are proportional to the same random

path because it is assumed that they are all related to the same general capabilities.

The ADR operation cost for RPO satellites is one third the typical ADR operation

cost ($83,250 per operation) because RPO satellites are upgraded to be cooperative
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targets, and the maneuver duration is shorter due to this enhanced capability.

Warehouse and Depot Cost Uncertainty

Warehouse cost uncertainty mirrors the ADR vehicle cost modeling approach, with

an initial cost of $100,000,000 that decreases with each new warehouse added to the

system. The learning-curve-based reduction follows:

n = {1, 2, . . . , Nmax}; value(n) = Pmin + (1 − Pmin) · e−λn (A.7)

where n is the number of warehouses added (starting from 1), Nmax is the max-

imum number of warehouses considered, Pmin is the minimum performance level

(asymptotic limit), and λ is the learning exponent (rate of decay) randomly sam-

pled between 0.1 and 0.5.

Warehouse Failure Cost Modeling In addition to initial construction and

operational costs, warehouses require maintenance every 15 years. The cost associated

with each warehouse repair is modeled using a lognormal distribution to capture the

high variability and right-skewed nature of major infrastructure repair costs:

Cfailure ∼ Lognormal(µ = ln(5 × 106), σ = 1.0) (A.8)

where the median failure cost is approximately $5 million, while σ=1.0 allows for

significant variability. This modeling approach reflects the reality that warehouse

infrastructure failures can range from minor system repairs to complete facility re-

construction, depending on the nature and severity of the failure event.

The total warehouse-related costs over the mission lifetime thus include initial

construction costs (with learning curve and time-based reductions), operational costs,

and stochastic failure repair costs that occur throughout the warehouse operational

life.
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Technology Obsolescence

This framework uses a Weibull-based utility function to reduce satellite revenue after

it has reached the time of obsolescence, based the utility function u(t), defined by

on Geng et. al. [201]. The Geng model uses 3-parameter Weibull distribution with

β = 2. The intensity metric is determined randomly for each scenario and time to

obsolescence for each scenario comes from a Weibull distribution with shape, k = 2

and scale, lambda = 1.

ui(t) = uo,ie
−

(
(t−Tobs,i)β

θobs,i

)
for t ≥ Tobs,i,

utotal =
∑

i

ui(t).

(A.9)

Failure Rates

OneWeb has experienced 4 satellite failures in 4 years [202] [203]. This paper therefore

sets failure rate to 1 satellite fail per year, which is converted to mean time between

failure (MTBF) using the following equation:

MTBF = ((1/(failureRate/(numPlanes ∗ totalSatellitesPerP lane))) (A.10)

Every satellite is assigned a time to failure based on the MTBF:

Tfailure ∼ Exponential
( 1

MTBF

)
(A.11)

While every simulation starts with 1 failure per year, this failure rate decreases
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over time, such that:

f = f0 − min(0.1 · er·t, 0.99) (A.12)

Where:

f = current failure rate

f0 = original failure rate

r = failure rate change rate

t = current time
In this equation, failure rate change rate is a random value sampled from a uniform

distribution, ranging from 0.005 to 0.08.

Cost of Collision Avoidance and Collision Events

Pcollision = 1 − e−β·Nfail·T (A.13)

In this equation, Nfail is the number of failed satellites, T is the number of years,

and β = 0.01, the collision hazard rate per satellite per year. The base cost of a

collision-related event is defined as Cbase = 10,000. The probability of a cascade-type

catastrophic event is:

Pcascade = min(0.02 · Tcascade, 0.5) (A.14)

The collision cost is then drawn from a uniform distribution, based on whether a

cascade occurs:

Ccollision =


Cbase · U(1000, 10000), with probability Pcascade

Cbase · U(1, 1000), with probability 1 − Pcascade

(A.15)

The actual cost incurred is:
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C =


Ccollision, if a collision occurs (with probability Pcollision)

0, otherwise
(A.16)
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APPENDIX B

DECISION RULE ALGORITHMS

B.1 Satellite-by-Satellite Decisions

Figure B.1: Appendix: Satellite-Level Decision Tree Logic
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B.2 Satellite-Constellation-Level Decisions

B.2.1 Upgrade satellites to be refuelable or repairable

Figure B.2: Appendix: Satellite Refuelability/Repairability Decision Tree
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B.2.2 Upgrade satellites to be RPO-capable

Figure B.3: Appendix: RPO Upgrade Decision Rule Tree
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B.3 Infrastructure-Level Decisions

This section presents the mathematical formulation of servicing infrastructure-level

decision algorithms

B.3.1 Add a new warehouse

Figure B.4: Appendix: Add Warehouse Decision Rule Tree
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B.3.2 Upgrade a warehouse

Figure B.5: Appendix: Upgrade Warehouse Decision Rule Tree
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